Alle Artikel, die sich mit der wissenschaftlichen Arbeit der Forschungsgruppe beschäftigen.

Studie zur Bestimmungsgenauigkeit: Flora Incognita erreicht 98,8 %

Über die Studie

Vor kurzem wurde eine wissenschaftliche Studie veröffentlicht, die in Großbritannien fünf Pflanzenbestimmungs-Apps hinsichtlich ihrer Bestimmungsgenauigkeit testete. Flora Incognita war nicht dabei, aber die für die Untersuchung aufgenommenen und ausgewerteten Bilder wurden mit publiziert. Das bot uns die Gelegenheit, unsere App mit diesem unabhängigen Bilddatensatz zu testen.

Das (erste) Ergebnis

Wir bestimmten die Bilder mit Flora Incognita und verglichen unsere Ergebnisse mit den Artnamen, die die Autor:innen erwarteten. In diesem ersten Durchgang lag Flora Incognita bei mehr als 90 % der Bilder richtig und übertraf damit bereits die anderen Apps. In einem nächsten Schritt wollten wir jedoch herausfinden, warum Flora Incognita bei den restlichen 10 % der Bilder (angeblich) falsche Artnamen liefert. Deswegen haben wir diese fraglichen Bilder in Zusammenarbeit mit externen Botanikern nochmals manuell überprüft. Dabei stellte sich heraus, dass Flora Incognita nur in wenigen Fällen tatsächlich falsch lag.

Gründe für „falsche“ Bestimmung

In den meisten Fällen bestimmte Flora Incognita richtig, und es gab andere Gründe, warum der vorgeschlagene Artname nicht der war, den die Autor:innen erwarteten:
1) Taxonomie. Es gibt mehrere parallel existierende Taxonomien mit manchmal leicht unterschiedlichen Konzepten, die aber alle gültig sind – was in einigen Fällen zu unterschiedlichen Namen oder unterschiedlichen taxonomischen Rängen (Art vs. Unterart) für dieselbe Pflanzenart führt.
2) Bestimmungsfehler. Manchmal war die erwartete Art falsch, und das App-Ergebnis richtig.
3) Biologie. Manchmal ist es nicht möglich, das Ergebnis einer App-Bestimmung als richtig oder falsch zu einzuordnen, da die Art auf dem Bild selbst von Expert:innen nicht mit Sicherheit auf Artniveau bestimmt werden kann.

Fazit
Wir möchten Dich ermutigen, bei einem unerwarteten Bestimmungsergebnis nicht gleich zu sagen: „Die App liegt falsch“. Frage Dich beim nächsten Mal: Kenne ich diese Art unter einem anderen Namen? War das Bild wirklich geeignet, um die Art zu bestimmen? Könnte es nicht doch die Art sein, die die App vorschlägt? Denn in unserer neuen Veröffentlichung zeigen wir, dass Flora Incognita nach einer gründlichen Untersuchung der Fehlerursachen des ersten Durchlaufs 98,8 % der Arten im gesamten Datensatz richtig bestimmt hat.

Hier kannst Du sie lesen (auf Englisch): Rzanny, M., Bebber, A., Wittich, H. C., Fritz, A., Boho, D., Mäder, P., & Wäldchen, J. (2024). More than rapid identification—Free plant identification apps can also be highly accurate. People and Nature, 00, 14. https://doi.org/10.1002/pan3.10676

Neue Publikation: Erkennt eine Künstliche Intelligenz die Blattform?

Blattform und KI
Die automatische Erkennung von Pflanzenarten mittels künstlicher Intelligenz (KI) basiert maßgeblich auf der Analyse von Blattformen. Wie diese komplexen Strukturen von der KI interpretiert werden, ist jedoch oft schwer nachvollziehbar und stellt eine sogenannte ‚Black Box‘ dar. Insbesondere die hohe Variabilität von Blattformen innerhalb einer Art, wie sie beispielsweise beim heimischen Gold-Hahnenfuß Ranunculus auricomus zu beobachten ist, stellt die KI vor eine Herausforderung.

Geometrische Morphometrie
Um die Leistungsfähigkeit von KI-basierten Erkennungssystemen zu evaluieren und besser zu verstehen, haben wir geometrische Morphometrie als Werkzeug der erklärbaren KI (eXplainable KI oder auch XAI) eingesetzt. Diese Methode ermöglicht eine detaillierte quantitative Beschreibung von Formvariationen und erlaubt so einen direkten Vergleich zwischen den Ergebnissen der KI und einer etablierten morphometrischen Methode.

Experiment
Unser Fokus lag auf der Erkennung regionaler Populationsunterschiede beim Gold-Hahnenfuß. Wir untersuchten, ob die KI in der Lage ist, subtile morphologische Unterschiede zwischen verschiedenen Populationen anhand von einfachen Smartphone-Aufnahmen zu erkennen. Die Ergebnisse zeigen, dass die KI selbst bei komplexen Bildhintergründen zuverlässig charakteristische Merkmale der Blätter identifizieren kann. Die Übereinstimmung mit den Ergebnissen der geometrischen Morphometrie bestätigt die Leistungsfähigkeit der KI und unterstreicht das Potenzial dieser Technologie für die automatisierte Phänotypisierung in der Pflanzenforschung.

Bedeutung dieser Forschung
Unsere Studie liefert wichtige Erkenntnisse für den Einsatz von KI in der Pflanzenbestimmung und eröffnet neue Perspektiven für die Erforschung der biologischen Vielfalt. Die Kombination von KI und modernen morphometrischen Methodenermöglicht eine umfassende Analyse von Pflanzenmerkmalen und trägt so zu einem besseren Verständnis der Evolution und Anpassung von Pflanzen an unterschiedliche Umweltbedingungen bei.

Die Publikation ist ab sofort frei lesbar:
Hodač, L., Karbstein, K., Kösters, L., Rzanny, M., Wittich, H.C., Boho, D., Šubrt, D., Mäder, P. and Wäldchen, J. (2024), Deep learning to capture leaf shape in plant images: Validation by geometric morphometrics. Plant J. https://doi.org/10.1111/tpj.17053

Titelbild: Ranunculus auricomus, Ladislav Hodač

Mit Pflanzen-App die Folgen des Klimawandels verstehen

Automatisierte Analysen von Pflanzenbeobachtungen zeigen, wie sich der Jahresrhythmus der Pflanzen verändert.

Leipzig. Ein Forschungsteam unter der Leitung des Deutschen Zentrums für integrative Biodiversitätsforschung (iDiv) und der Universität Leipzig hat einen Algorithmus entwickelt, der Beobachtungsdaten der App Flora Incognita analysiert. Daraus lassen sich ökologische Muster ableiten, die Aufschluss über die Auswirkungen des Klimawandels auf die Pflanzenwelt geben. Die Studie wurde im Fachmagazin Methods in Ecology and Evolution veröffentlicht.

Pflanzen reagieren auf jahreszeitliche Veränderungen, etwa indem ihre Knospen aufbrechen, sie Blätter austreiben oder blühen. Der Klimawandel könnte diese Phasen im Lebenszyklus von Pflanzen verschieben – und umgekehrt können Daten über solche phänologischen Veränderungen an vielen verschiedenen Orten und bei verschiedenen Pflanzen Rückschlüsse über die Auswirkungen des Klimawandels erlauben. Doch für solche Analysen werden viele Daten benötigt – ohne die Beteiligung von Bürgerwissenschaftlerinnen und Bürgerwissenschaftlern wäre eine Datenerfassung im großen Stil undenkbar. „Das Problem ist: Je weniger Menschen sich als Bürgerwissenschaftler an solchen Datensammlungen beteiligen, desto stärker leidet die Qualität der Daten“, sagt Erstautorin Karin Mora, Wissenschaftlerin an der Universität Leipzig und bei iDiv.

Mobile Apps wie Flora Incognita könnten hier Abhilfe schaffen. Sie ermöglichen es den Nutzerinnen und Nutzern, unbekannte Pflanzen, die ihnen in der Natur ins Auge fallen, anhand von Fotos zu identifizieren. „Wenn ich mit der App eine Pflanze aufnehme, dann wird diese Beobachtung mit einem Orts- und Zeitstempel versehen“, sagt Ko-Autorin Jana Wäldchen vom Max-Planck-Institut für Biogeochemie (MPI-BGC), die Flora Incognita gemeinsam mit Wissenschaftlerinnen und Wissenschaftlern der TU Ilmenau entwickelt hat. „Damit haben sich inzwischen Millionen von zeitgestempelten Pflanzenbeobachtungen aus verschiedenen Regionen angesammelt.“ Zwar erfassen auch Erdbeobachtungssatelliten die Phänologie ganzer Ökosysteme von oben, mit den gewonnen Daten lässt sich aber nicht so leicht beurteilen, welche Prozesse tatsächlich am Boden ablaufen.

Pflanzen reagieren synchron

Die Forschenden entwickelten einen Algorithmus, der auf fast 10 Millionen Beobachtungen von fast 3000 Pflanzenarten zurückgriff, die zwischen 2018 und 2021 über die Flora Incognita-App in Deutschland erfolgten. Jede Pflanze verfügt über einen eigenen Rhythmus, also zum Beispiel eine eigene Blühphase oder eine eigene Vegetationsphase. Die Untersuchungen der Wissenschaftlerinnen und Wissenschaftler zeigten, dass aus diesem individuellen Verhalten ein Gruppenverhalten auftritt. Daraus konnten sie wiederum ökologische Muster ableiten und untersuchen, wie sich diese innerhalb eines Jahreszyklus verändern. So unterscheiden sich etwa Ökosysteme am Fluss von denen in den Bergen, wo phänologische Ereignisse später einsetzen.

Das Verfahren berücksichtigt auch das Beobachtungsverhalten der Nutzerinnen und Nutzer, das – anders als bei einer klassischen Datenerhebung – nicht systematisch erfolgt.  So werden über die App mehr Beobachtungen am Wochenende und in dicht besiedelten Gebieten verzeichnet. „Unsere Methode kann diese Effekte von den ökologischen Mustern automatisiert isolieren“, erklärt Karin Mora. „Weniger Beobachtungen bedeuten auch nicht, dass wir die Synchronisation nicht erfassen können. Natürlich gibt es im tiefen Winter sehr wenige Beobachtungen, aber da gibt es auch nur sehr wenige Pflanzen, die man beobachten kann.“

Es ist bekannt, dass sich aufgrund des Klimawandels auch jahreszeitliche Verschiebungen ergeben und der Frühling immer eher einsetzt – was das konkret für die Beziehung zwischen Pflanzen und Insekten und somit auch für die Ernährungssicherheit bedeutet, wird derzeit noch erforscht. Mithilfe des neuen Algorithmus lässt sich nun besser untersuchen, welche Auswirkungen diese Veränderungen auf die Pflanzenwelt haben.

Diese Studie wurde unter anderem von der Deutschen Forschungsgemeinschaft (DFG; FZT-118) und durch den iDiv-Flexpool gefördert. Die Arbeit des Forschungsteams wird zudem finanziert vom Sächsischen Ministerium für Wissenschaft, Kultur und Tourismus (SMWK), im Rahmen von Sondermitteln für die Exzellenzcluster-Initiative „Breathing Nature“.

 

Diese Meldung wurde uns von Kati Kietzmann vom iDiv zur Verfügung gestellt. Herzlichen Dank. Link zur Originalmeldung: Mit Pflanzen-App die Folgen des Klimawandels verstehen

 

Originalpublikation:

Karin Mora, Michael Rzanny, Jana Wäldchen, Hannes Feilhauer, Teja Kattenborn, Guido Kraemer, Patrick Mäder, Daria Svidzinska, Sophie Wolf, Miguel D. Mahecha (2024): Macrophenological dynamics from citizen science plant occurrence data. Methods in Ecology and Evolution, DOI: 10.1111/2041-210X.14365

Neue Publikation: Ein neuer Ansatz für das Auffinden und die Abgrenzung von Arten

Was ist eine Art? Wie wurden Arten in der Vergangenheit definiert und wie werden sie in Zukunft beschrieben? Wie viele Arten gibt es auf der Erde? Wie viele sind noch unentdeckt? Können wir sie schneller beschreiben, als sie durch Klimaveränderungen oder menschliche Einflüsse aussterben?

Von griechischen Philosophen wie Aristoteles über Charles Darwin und Lamarck bis heute haben sich Wissenschaftler mit diesen grundlegenden Fragen beschäftigt. Entgegen der öffentlichen Wahrnehmung sind sie jedoch bis heute weitgehend ungelöst geblieben.

Die moderne Genomik lehrt uns heute, dass das, was wir als Arten bezeichnen, aufgrund rein morphologischer, regionaler Artbeschreibungen aus der Vergangenheit unbegründete Einheiten sein können. Dies gilt insbesondere für Tier-, Pflanzen- und Pilzgruppen, die durch komplexe evolutionäre Prozesse wie Hybridisierung oder Asexualität gekennzeichnet sind. Hier werden die Herausforderungen der integrativen Taxonomie (Genomik + Morphologie + Ökologie etc.) deutlich: >30 Artkonzepte, Mangel an universellen Merkmalen/Markern, Fehlen geeigneter Analysewerkzeuge für große Datensätze und komplexe Evolutionsprozesse sowie stark autorenabhängige Datenintegration.

Um dies zu beheben, hat ein interdisziplinäres und internationales Forschungsteam (Biolog:innen, Informatiker:innen aus Deutschland, Spanien, China und USA) unter der Leitung von Dr. Kevin Karbstein, Lara Kösters, Dr. Ladislav Hodač, Martin Hofmann, Dr. Jana Wäldchen und Prof. Dr. Patrick Mäder vom Max-Planck-Institut für Biogeochemie und der Technischen Universität Ilmenau diese Fragen aufgegriffen und einen innovativen Übersichtsartikel verfasst, der jetzt in der renommierten Fachzeitschrift Trends in Ecology and Evolution (TREE; Open Access Link: https://www.cell.com/trends/ecology-evolution/fulltext/S0169-5347(23)00296-3) erschienen ist.

Die Autor:innen präsentieren hier die Vision einer modernen integrativen Taxonomie auf der Grundlage eines einheitlichen Artbegriffs in Kombination mit künstlicher Intelligenz (Deep Learning), die die Entdeckung genetischer Einheiten mit der Fusion automatisch extrahierter Informationen wie Morphologie, Physiologie, Ökologie oder Verhalten verbindet, um Arten als natürliche Einheiten zu entdecken. Dieser Prozess wird als Species Delimitation bezeichnet. Auf diese Weise kann künstliche Intelligenz dazu beitragen, die Entschlüsselung der biologischen Vielfalt in einem bisher nicht gekannten Ausmaß zu beschleunigen.

Vorgeschlagenes Schema einer auf maschinellem Lernen basierenden Implementierung für eine integrative Taxonomie

Flora-Incognita-Beobachtungen ermöglichen phänologisches Monitoring in ganz Europa

Eine neue Studie aus unserem Forschungsprojekt zeigt, dass Pflanzenbeobachtungen, die mit Bestimmungs-Apps gesammelt werden, Aussagen über die Entwicklungsstadien von Pflanzen zulassen – sowohl kleinräumig als auch europaweit. [Studie lesen]

Warum ist die Dokumentation der Phänologie wichtig?

Viele Pflanzen in gemäßigten Klimazonen durchlaufen jedes Jahr einen Ablauf aus Blüte, Blattaustrieb, Fruchtbildung, Blattfärbung und Blattfall. Diesen Prozess nennt man Phänologie, und er und wird stark von lokalen klimatischen Bedingungen beeinflusst (zum Beispiel von der Anzahl der Tage im Jahr, an denen eine bestimmte zum Wachstum notwendige Mindesttemperatur erreicht wird, siehe „Growing Degree Day“ oder GDD). Deswegen ist es nicht verwunderlich, dass sich der Klimawandel stark auf die Phänologie auswirkt. Beispielsweise beginnt der Frühling mittlerweile früher als noch in den 1950er Jahren, wodurch die Vegetationsperiode viel schneller einsetzt als damals. Solche Veränderungen haben Auswirkungen auf landwirtschaftliche Abläufe und können außerdem auch zu ökologischen Ungleichgewichten führen: Pflanzen beginnen beispielsweise zu blühen, noch bevor ihre Bestäuber aktiv sind. Aber nicht alle Pflanzen reagieren gleichermaßen auf klimatische Veränderungen. Arten, die ein größeres Toleranzspektrum für warme Tage haben, oder bei denen andere Faktoren die Phänologie bestimmen, bleiben von Verschiebungen nahezu unberücksichtigt. Um ein wirklich präzises Verständnis für den Einfluss des Klimas auf die Pflanzenphänologie zu erlangen, ist es wichtig, die Phänologie von möglichst vielen verschiedenen Arten, in unterschiedlichen Ländern und geografischen Regionen zu dokumentieren.

Wie funktioniert das phänologische Monitoring?

Phänologie wird heute bereits über verschiedene Methoden dokumentiert. Satellitenbilder erkennen das Ergrünen ganzer Landstriche, Kameras in Baumkronen fertigen automatisierte Bilderserien über den Zustand der darunter liegenden Vegetationsschicht an. Solche Datensätze erlauben Aussagen über große Skalen, lassen aber kaum Rückschlüsse auf die Phänologie von einzelnen Arten oder gar Individuen zu. Hierfür gibt es Initiativen, die mit Hilfe von geschulten Freiwilligen durchgeführt werden. Die Zahl dieser Bürgerwissenschaftler:innen geht jedoch immer weiter zurück, und zudem ist diese Art der Datenerhebung in der Regel auf bestimmte Pflanzenarten (oftmals Bäume), Länder oder noch kleinere Regionen beschränkt.

Kann man mit Flora Incognita Phänologie dokumentieren?

Daten, die über Pflanzenbestimmungs-Apps wie Flora Incognita erhoben werden, können hier eine Lösung sein. Das haben die Wissenschaftler:innen unseres Projekts bereits 2023 nachgewiesen: Pflanzen werden vor allem dann wahrgenommen und fotografiert, wenn sie einerseits auffällig sind und zudem blühen, bunte Früchte tragen oder Herbstlaub. So entstehen Beobachtungsmuster, die phänologische Events anzeigen. Diese Muster decken sich in vielen Fällen mit denen, die der Deutsche Wetterdienst (DWD) in Bezug auf den Blühbeginn von Arten in Deutschland veröffentlicht. Angenommen, der DWD registriert in einem Jahr einen früheren Blühbeginn des Holunders als im Vorjahr, dann spiegelt sich diese Verschiebung auch in den Bestimmungsanfragen von Flora Incognita wider.

Details zu dieser Studie findest Du in diesem Artikel: Phänologie-Monitoring mit Flora-Incognita-Pflanzenbeobachtungen.

Neue Studie zeigt Phänologien und bioklimatische Zusammenhänge über ganz Europa

Unsere neue Publikation zeigt nun, dass Smartphone-Beobachtungen sogar bekannte überregionale phänologische Muster widerspiegeln, wie z. B.

  • die spätere Blüte vieler Arten in Nord- und Osteuropa oder
  • die spätere Blüte vieler Arten in größeren Höhenlagen, aber auch
  • eine europaweite Verschiebung des Blühbeginns zwischen den Jahren, wie es bereits für Deutschland nachgewiesen wurde.

Das beweist, dass die von Pflanzenbestimmungs-Apps generierten Daten eine zuverlässige Quelle für das Vorkommen von Pflanzen zu einem bestimmten Zeitpunkt und an einem bestimmten Ort sind und sich gut für die Beantwortung weiterer Forschungsfragen eignen – auch in größeren Maßstäben.

Die Ergebnisse der Studie im Überblick

Pflanzen blühen eher, wenn es mehr warme Tage gibt

Wir haben die europaweiten Beobachtungsdaten (Quellen: Flora Incognita, aber auch Meldeplattformen wie iNaturalist) aus 2020 und 2021 von 20 verschiedenen Pflanzenarten miteinander verglichen. Dabei konnten wir feststellen, dass insbesondere die Frühlingsblüher wie beispielsweise der Gamander-Ehrenpreis Veronica chamaedrys 2020 zeitiger geblüht haben – bis zu zwei Wochen eher als 2021.

 

Eine Analyse der Temperatur am jeweiligen Standort zeigte auf, dass es im Frühjahr 2020 deutlich mehr Tage gab, an denen im Mittel 5°C oder darüber erreicht wurden, die Pflanzen also in kürzerer Zeit mehr Wärme aufnehmen konnten. Bei Arten, die später im Jahr blühen, wie der Rainfarn Tanacetum vulgare oder der Gewöhnliche Natternkopf Echium vulgare, war der Effekt weniger ausgeprägt.

Pflanzen blühen später, wenn sie in höheren Lagen, weiter im Osten oder im Norden wachsen

Es waren jedoch nicht nur Muster zwischen den Jahren, sondern auch zwischen verschiedenen Regionen zu erkennen. Es ist bekannt, dass die gleiche Art je nach Standort zu unterschiedlichen Zeiten blüht. (-> Hopkins‘ bioklimatisches Gesetz) Wenn beispielsweise die gleiche Pflanzenart in Schweden und Spanien vorkommt, blüht die spanische Pflanze einige Tage oder sogar Wochen früher als die im Norden. Die genaue Anzahl der Tage bis zur Blüte variiert natürlich je nach Pflanzenart. Auch diese Gesetzmäßigkeit lässt sich mit Flora-Incognita-Daten abbilden:

Diese Abbildung zeigt den Median der Beobachtungsdaten für die drei bereits vorgestellten Pflanzenarten. Rosa und orange Farben zeigen an, dass die Art am jeweiligen Ort früh im Jahr blühte, während die gleiche Art an einem anderen Standort später blühte (dunkelgrün und blau codiert). Deutlich setzen sich nicht nur die Längen- und Breitengrade ab, sondern auch die Mittel- und Hochgebirge. Details zu den Daten und angewandten Methoden sind in der Publikation ersichtlich, die am E nde des Artikels verlinkt ist.

Alle untersuchten 20 Pflanzenarten ließen sich in eines von drei Hauptmustern eingliedern, die hier beispielhaft abgebildet sind. Veronica chamaedrys zeigt im Jahr 2020 mehr rötliche Farben als im Jahr 2021; wie bereits erwähnt ist dies auf die wärmeren Temperaturen im Frühjahr 2020 zurückzuführen. Echium vulgare zeigt über die Jahre hinweg nur geringfügige Reaktionen auf unterschiedliche Klimabedingungen, und für Tanacetum vulgare konnten wir feststellen, dass Phänologie im Vergleich zu den anderen Arten ein umgekehrtes Muster aufweist: Rainfarn blüht in östlichen, nördlichen und hohen Lagen eher als seine Geschwister in westlichen, südlichen und niedrig gelegeneren Teilen Europas. Auch dieses Phänomen wurde bereits in der wissenschaftlichen Literatur beschrieben. Arten, die eigentlich viele warme Tage bis zur Blüte brauchen, haben sich an kalte Standorte mit einer Verkürzung der Vegetationszeit und einem zeitigeren Blühtermin angepasst.

Zusammenfassung

Die neue Publikation zeigt zum ersten Mal auf einer europaweiten Skala zeitliche und räumliche Verschiebungen von Pflanzenphänologie anhand von Daten, die nicht gezielt für diesen Zweck gesammelt wurden. Für die Nutzer:innen von Flora Incognita bedeutet  das, dass jede einzelne Pflanzenbestimmung mehr als nur die eigene Neugierde befriedigt. Durch die Dokumentation von Pflanzenvorkommen zu einer bestimmten Zeit an einem bestimmten Ort schaffen sie eine wachsende und robuste Datenquelle zur Phänologie, die keine nationale Grenzen kennt, neue Arten mit einschließt und zahlreiche weiterführende Forschungsfragen beantworten kann.

Vielen Dank für Eure Neugier.

Die neue Veröffentlichung ist ab sofort frei verfügbar:

Rzanny, M., Mäder, P., Wittich, H.C. et al. Opportunistic plant observations reveal spatial and temporal gradients in phenology. npj biodivers 3, 5 (2024). https://doi.org/10.1038/s44185-024-00037-7

Veronica chamaedrys im Titelbild: aufgenommen von Ilse Schönfelder.

Blog-Banner, welches den Text "Neue Publikation verfügbar" enthält und blau-grüne Interpolationskarten von Deutschland, beschriftet mit "DWD" und "Flora Incognita". Die Karten sehen sich sehr ähnlich.

Phänologie-Monitoring mit Flora-Incognita-Pflanzenbeobachtungen

Bedeutung der Phänologie
Vor wenigen Tagen ist eine neue Publikation unserer Forschungsgruppe erschienen, die zeigt, dass die Pflanzenbeobachtungen, die über unsere App gesammelt wurden, traditionelle Initiativen zur Überwachung der Pflanzenphänologie unterstützen können. Warum ist das wichtig? Das Beobachten der Pflanzenphänologie hilft Wissenschaftler:innen beispielsweise dabei, zu verstehen, wie der Klimawandel auf Pflanzen wirkt. Verschieben sich Blühzeiträume aufgrund von veränderten klimatischen Verhältnissen, kann das für ökologische Zusammenhänge oder die Ausbreitung von Arten erhebliche Folgen haben. Traditionell werden die Phasen der Phänologie (z.B. Knospenaufbruch, Blattaustrieb, Blühbeginn und Blattfärbung) manuell durch geschulte Freiwillige aufgenommen – doch deren Anzahl nimmt stetig ab.

Traditionelle Phänologieüberwachung
In Deutschland wird das „offizielle“ Phänologie-Monitoring hauptsächlich vom Deutschen Wetterdienst (DWD) durchgeführt. Geschulten Beobachter:innen wird eine bestimmte „Station“ zugewiesen, die einem dedizierten Ort für die Beobachtung eines Baumes, Strauchs oder krautigen Pflanze entspricht. Die Anzahl dieser Stationen variiert je nach beobachteter Art. Das bedeutet, dass einige Arten mehr Stationen haben als andere. Während der Vegetationsperiode müssen die Beobachter:innen die von ihnen untersuchten Pflanzen mindestens zweimal pro Woche besuchen und den Tag notieren, an dem bestimmte Phäno-Phasen beginnen.

Prozessdiagramm, das zeigt, wie Pflanzenbeobachtungsdaten in Daten zum Blühbeginn umgewandelt werden und mit DWD (Deutscher Wetterdienst) Beobachtungsstationen für eine exemplarische Art in Beziehung gesetzt werden. (aus: Katal & Rzanny et al. 2023)

Prozessdiagramm, das zeigt, wie Pflanzenbeobachtungsdaten in Daten zum Blühbeginn umgewandelt werden und mit DWD (Deutscher Wetterdienst) Beobachtungsstationen für eine exemplarische Art in Beziehung gesetzt werden. (aus: Katal & Rzanny et al. 2023)

Aufbereitung von Flora-Incognita-Daten
Die Forschenden Negin Katal und Michael Rzanny entwickelten nun eine Möglichkeit, Flora-Incognita-Daten so zu verarbeiten, dass diese mit den beschriebenen DWD-Stationen vergleichbar werden: Sie identifizierten für verschiedene Arten die Standorte der DWD-Stationen und zogen einen 5 km großen Kreis um sie herum. Innerhalb dieses Kreises und eines bestimmten Höhenbereichs betrachteten sie alle Flora-Incognita-Beobachtungen dieser Art. Gab es mindestens 35 dieser Funde, wurde eine „Flora-Incognita-Station“ erstellt. Wenn diese nicht erreicht werden konnten, selbst nicht innerhalb eines zusätzlichen Puffers (in Schritten von je 1 km, bis zu 55 km), wurde an diesem Ort keine Flora-Incognita-Station gebildet.

Räumlich interpolierte Karten basierend auf den DWD- und Flora Incognita-Stationen für den Beginn der Blüte von Sambucus nigra und Taraxacum officinale in den Jahren 2020 und 2021. Die Farbskala zeigt den jeweiligen Tag im Jahr für den Blühbeginn in jeder Rasterzelle (aus: Katal & Rzanny et al. 2023).

Räumlich interpolierte Karten basierend auf den DWD- und Flora Incognita-Stationen für den Beginn der Blüte von Sambucus nigra und Taraxacum officinale in den Jahren 2020 und 2021. Die Farbskala zeigt den jeweiligen Tag im Jahr für den Blühbeginn in jeder Rasterzelle (aus: Katal & Rzanny et al. 2023).

Interpolation der Daten
Im nächsten Schritt wurde für jede dieser Flora-Incognita-Stationen der Blühbeginn in den Jahren 2020 und 2021 berechnet, und die Stationsdaten für ganz Deutschland interpoliert. Die so entstandenen Interpolationskarten zeigen für die meisten Arten ähnliche Ergebnisse wie die manuelle Dokumentation durch den DWD.

Fazit
Die Haupterkenntnis der Publikation ist, dass der Blühbeginn aus unseren Pflanzenbeobachtungen abgeleitet werden kann – zumindest für einjährige krautige Arten oder Sträucher mit auffälliger Blühphase. Damit können Flora-Incognita-Daten die traditionell gesammelten phänologischen Erhebungen großräumig, aber auch für eine Vielzahl neuer Arten, ergänzen. Dadurch können wir einen wertvollen Beitrag zur Dokumentation phänologischer Verschiebungen leisten, was unter anderem für die Dokumentation und das Verständnis des Klimawandels von großer Bedeutung ist.

Wir möchten uns bei Euch, den immer neugierigen Nutzer:innen, bedanken. Aus Euren Pflanzenbestimmungen entstand dieser Datensatz, und wir hoffen, ihr bleibt weiterhin motiviert, an Wegen und Wiesen, im Wald und am See, auf Bergen und am Strand Pflanzen zu entdecken und aufzunehmen.

Hier könnt Ihr das Paper lesen (nur auf Englisch):

Katal, N., Rzanny, M., Mäder, P., Römermann, C., Wittich, H. C., Boho, D., Musavi, T. & Wäldchen, J. (2023). Bridging the gap: How to adopt opportunistic plant observations for phenology monitoring Frontiers in Plant Science, 14.

doi: 10.3389/fpls.2023.1150956

 

Blog-Banner zur Publikation des User Experiments zur Erkennung von Pflanzenmerkmalen

Wie kann Pflanzenbestimmung mit Bestimmungsschlüsseln erleichtert werden?

Unsere neue Publikation „Towards more effective identification keys – a study of people identifying plant species characters“  untersucht systematisch, wie gut Menschen mit unterschiedlichem botanischem Hintergrund morphologische Pflanzenmerkmale wahrnehmen, verstehen und zuordnen können. Am Ende schlägt unsere Publikation eine Reihe von Gestaltungsprinzipien für intuitive und benutzerfreundliche Bestimmungsschlüssel vor.

Kontext

Die korrekte und schnelle Bestimmung von Pflanzenarten spielt eine wichtige Rolle beim Schutz der biologischen Vielfalt, denn der Mensch kann nur schützen, was er kennt. Die automatisierte Artbestimmung über Apps wie Flora Incognita kann dazu beitragen, die Wissenslücke zu schließen, aber die gängigste Methode zur Bestimmung von Pflanzenarten ist immer noch die Arbeit mit Bestimmungsschlüsseln in gedruckten Büchern. Für Laien sind diese Schlüssel oft schwer verständlich, da viele Fachbegriffe verwendet werden und es an leicht verständlichen Abbildungen fehlt.

Allerdings sind es nicht selten ebendiese Laien, die an der Erfassung der biologischen Vielfalt beteiligt sind – manche Initiativen sind sogar auf sie angewiesen. Häufig sind detaillierte Informationen über Arten, phänologische Merkmale oder andere Merkmale erforderlich, um die anfallenden Aufgaben zu erfüllen. Um die Zahl der Citizen Scientists, die sich an Monitoring-Projekten beteiligen, zu halten und zu erhöhen, wären neue Ansätze zur Unterstützung von Anfängern hilfreich – vor allem, wenn es darum geht, schnell und zuverlässig Kompetenzen zur Bestimmung von Arten anhand von Pflanzenmerkmalen aufzubauen.

Warum ist die richtige Beurteilung von Pflanzenmerkmalen so wichtig?

In diesem Beispiel sehen Sie Bilder des Europäischen Kreuzdorns (Rhamnus cathartica) und des Gemeinen Hartriegels (Cornus sanguinea). Auf den ersten Blick sehen beide Arten sehr ähnlich aus, so dass die exakte Wahrnehmung und Beschreibung der Blattränder ein entscheidender Faktor für die Artbestimmung ist:

 

Bild eines Blattes von Rhamnus cathartica - Purgier-Kreuzdorn

Rhamnus cathartica – Purgier-Kreuzdorn

Bild eines Blattes von Cornus sanguinea - Roter Hartriegel

Cornus sanguinea – Roter Hartriegel

 

 

 

 

 

 

 

 

 

 

Rhamnus cathartica mit seiner graubraunen Rinde und den oft dornigen Ästen hat elliptische bis ovale Blätter mit gezähnten Rändern. Cornus sanguinea hingegen hat dunkelgrün-braune Äste mit elliptischen bis ovalen Blättern, die einen ganzen Rand haben. Der entscheidende Faktor ist in diesem Fall ein Adjektiv, das man kennen, verstehen und wahrnehmen muss, um die betreffende Pflanze zu bestimmen.

Die Studie

Wir haben eine Online-Umfrage mit 484 Personen durchgeführt. Nachdem das Vorwissen der Personen über Pflanzen und Arten ermittelt worden war, erhielten sie die Aufgabe, morphologische Pflanzenmerkmale aus einer Reihe von Pflanzenbildern zu identifizieren, die durch Piktogramme unterstützt wurden, wie unten dargestellt. Insgesamt wurden 25 verschiedene Pflanzenmerkmale auf 6 Bildern aus unterschiedlichen Perspektiven dargestellt.

 

Überblick über den Studienaufbau

Ergebnisse

Im Durchschnitt erkannten die Teilnehmer*innen 79 % der Merkmale richtig, auch diejenigen, die keine umfassenden Artenkenntnisse hatten. Diejenigen, die sich selbst als mittelmäßige oder erfahrene Pflanzenexperten bezeichneten, benötigten weniger Bilder der jeweiligen Pflanze, um eine eindeutige Antwort zu geben, und fühlten sich insgesamt sicherer in ihrer Antwort. Im Durchschnitt wurden blütenbezogene Merkmale deutlich häufiger und schneller identifiziert als blattbezogene Merkmale. Außerdem wurden für blütenbezogene Merkmale weniger Bilder benötigt, um eine eindeutige Antwort zu finden.

Fazit

Es scheint, dass mit sorgfältig ausgearbeiteten Pflanzenmerkmalen, die durch eine Kombination aus Symbolen und erklärendem Text veranschaulicht werden, selbst komplexe Strukturen auch von Laien verstanden und richtig angesprochen werden können. Damit zeigen wir, dass bei der zukünftigen Gestaltung von klassischen Bestimmungsschlüsseln nicht nur die botanischen Begriffe im Vordergrund stehen sollten, sondern auch die Nutzer*innen und deren aktuelle Kenntnisse. Die Verbesserung der Artenkenntnis und das Erlernen von Pflanzenbestimmungsmethoden über Apps oder gedruckte Anleitungen kann durch intuitive Icons, Beschreibungen und Fragen unterstützt werden, die den Nutzer durch den Bestimmungsprozess führen.

Publikation:

Wäldchen, J., Wittich, H. C., Rzanny, M., Fritz, A., & Mäder, P. (2022). Towards more effective identification keys: A study of people identifying plant species characters. People and Nature. https://doi.org/10.1002/pan3.10405

Deep Learning in der phänologischen Pflanzenforschung: Eine systematische Literaturübersicht

Negin Katal hat gemeinsam mit ihrem Team einen Übersichtsartikel über aktuelle Forschungsansätze welche tiefe Lernverfahren (Deep Learning) in der Pflanzenphänologieforschung verwenden verfasst. Die Veröffentlichung gibt einen Überblick über die wichtigsten Ergebnisse aus 24 ausgewählten, von Experten begutachteten Studien, die in den letzten fünf Jahren (2016-2021) veröffentlicht wurden.

Die Phänologie von Pflanzen befasst sich mit der Veränderung des im Jahreverlauf periodisch wiederkehrenden Entwicklungsstufen von Pflanzen (z.B.: Blüte, Blattaustrieb, Blattfall, etc.). Forschungsarbeiten zur Phänologie haben zunehmend an Bedeutung gewonnen, da Klima-schwankungen und -veränderungen Einfluss auf die Phänologie von Pflanzen nehmen. Eine der größten Herausforderungen dabei ist die Entwicklung von Werkzeugen zur effizienten Analyse großer Datenmengen. Tiefe neuronale Netze können bei der Bildverarbeitung massiv unterstützen, dabei helfen Muster zu erkennen und machen es überhaupt erst möglich große Mengen an Bildmaterial effizient auszuwerten.

„[…]Deep Learning soll vor allem die bisher sehr zeit- und kostenintensiven, direkten phänologischen Messungen und Beobachtungen vereinfachen.“

Unser Artikel beschreibt die verwendeteten Methoden, die nach den untersuchten phänologischen Stadien, dem Vegetationstyp, dem räumlichen Maßstab und der Datenerfassung kategorisiert sind.

Einzelbeobachtungen sind beispielsweise menschliche Beobachtungen von Pflanzen, unter dem Kronendach installierte Kameras oder auch Herbarmaterial welches über Jahrhunderte und rund um den Globus gesammelt wurde.

Oberflächennahe Messungen beispielsweise mit PhenoCams, oberflächennahen Digitalkameras, die knapp über dem Kronendach angebracht sind oder mit Drohnen durchgeführt. Über Satelliten-Fernerkundung werden beispielsweiseIndices wie der Spektrale Vegetationsindex (VI) oder der erweiterten Vegetationsindex (EVI) bestimmt.

Außerdem werden Forschungstrends aufgezeigt und diskutiert sowie  vielversprechende zukünftige Richtungen aufgezeigt.

Die wichtigsten Ergebnisse

Die untersuchten Studien wurden in elf verschiedenen Ländern und in verschiedenen Vegetationstypen (Grasland, Wald, Buschland, landwirtschaftliche Flächen) durchgeführt. Die überwiegende Mehrheit der Primärstudien untersucht phänologische Stadien an einzelnen Individuen. Zehn Studien untersuchten die Phänologie auf regionaler Ebene. Keine einzige Studie arbeitet auf globaler Ebene. Tiefe Lernverfahren sollen in erster Linie die bisher sehr zeit- und kostenintensiven direkten phänologischen Messungen vereinfachen.

Im Allgemeinen sind die wichtigsten phänologischen Stadien das Aufbrechen der Blattknospen, Austrieb der Blätter, Blühbeginn, Erscheinen der Früchte, Seneszenz (Laubfärbung) und das Abwerfen der Blätter. Unter den untersuchten Studien beschäftigte sich mehr als die Hälfte entweder mit den Blattaustrieb oder mit dem Blühbeginn.

Dabei wurden unterschiedliche Methoden verwendet, um Trainingsmaterial für die Lernalgorhitmen zu gewinnen. Zwölf Studien verwendeten Bilder aus digitalen Wiederholungsaufnahmen und analysierten diese. Die Publikation enthält ausführliche Informationen über verschiedenen Arten von digitaler Fotografie, die sich besonders für die Bereitstellung dieser Trainingsdaten eignen.

Darüber hinaus in unserem Paper die Deep-Learning-Methoden, welche beim phänologischen Monitoring eingesetzt werden, kategorisiert, verglichen und diskutiert. Wir haben  festgestellt, dass Klassifizierungs- und Segmentierungsmethoden sich als sehr vorteilhaft erwiesen haben und am häufigsten angewendet werden, insbesondere weil sie mühsame und fehleranfällige manuelle Aufgaben ersetzen oder unterstützen können.

Es gibt unterschiedliche Methoden die Phänologie der Pflanzen zu beobachten.

Zukünftige Trends in der phänologischen Forschung durch den Einsatz von Deep Learning

Methoden des maschinellen Lernens benötigen große Datenmengen, um trainiert zu werden. Daher ist die Erhöhung der absoluten Zahl an gesammelten Daten eine der größten Herausforderungen – insbesondere in Regionen oder Ländern, in denen es bisher keine traditionellen phänologischen Beobachtungsnetze gibt. In dem Papier werden Methoden und Instrumente beschrieben, die sich als wichtige Hebel zur Unterstützung dieser Art von Forschung erweisen werden, zum Beispiel:

Die Installation von Kameras unter dem Kronendach, die automatisch Bilder aufnehmen und über lange Zeiträume hinweg übermitteln.

PhenoCams erweisen sich als neuer und vielversprechender Weg, um die Forschung voranzutreiben: Über indirekte Methoden, welche die Veränderungen in Bildern nachverfolgen, indem sie beispielsweise Veränderung der grünen oder roten Farbkoordinaten aus PhenoCam-Bildern bestimmen und dann dann mittels Algorithmen den Zeitpunkt phänologischer Ereignisse abzuleiten. Wir erwarten, dass in Zukunft viele weitere Studien erscheinen werden, die PhenoCam-Bilder über die bisher berechneten Vegetationsfarbindizes hinaus auswerten.

Citizen Science-Daten aus Pflanzenbestimmungs-Apps wie Flora Incognita erweisen sich als langfristige Quelle für Vegetationsdaten. Diese Bilder sind mit einem Zeitstempel und Standortinformationen versehen und können daher ähnlich wie Herbarmaterial wichtige Informationen, z. B. über Blütezeiten, liefern.

Es wird deutlich, dass Deep-Learning-Methoden in der Phänologieforschung erfolgreich angewendet und genutzt können und die traditionelle Erfassung und Auswertung von Daten verbessern und beschleunige können. Wir, als Forschungsteam, freuen uns darüber, ein Teil davon zu sein und laden Sie herzlich dazu ein, selbst eine wichtige Rolle zu spielen – indem Sie Flora Incognita nutzen, um die Vielfalt und den Wandel der Biodiversität um Sie herum zu beobachten und zu dokumentieren.

Wenn Sie Fragen zu unserer Forschung haben, zögern Sie nicht, uns zu kontaktieren! Sie finden Negin Katal zum Beispiel auf Researchgate und Twitter (@katalnegin).

Publikation

Katal, N., Rzanny, M., Mäder, P., & Wäldchen, J. (2022). Deep learning in plant phenological research: A systematic literature review. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.805738

Lassen sich Süßgräser über Smartphone-Bilder automatisch bestimmen?

Quecke oder Weidelgras? Gräser gelten als schwer zu bestimmende Arten. Die Quecke (Agropyron repens) wird in Gärten gefürchtet und bekämpft. Das Weidelgras (Lolium perenne) hingegen ist Grundlage vieler Rasenmischungen und ein wertvolles Futtergras. Nur welches ist welches?

In unserer gerade erschienenen Publikation haben wir untersucht ob sich Gräser trotz ihrer großen Ähnlichkeit automatisch erkennen und unterscheiden lassen. Dabei wollten wir wissen welche Perspektiven sich eignen und ob das sogar ohne Blüte möglich ist. Wir haben 31 Arten untersucht und dabei Aufnahmen des Blütenstandes, der Blätter und des Blatthäutchens verwendet. Dabei zeigte sich, dass eine Kombination verschiedener Perspektiven das Ergebnis verbessert. Der Blütenstand lieferte dabei die meiste Information. Sind keine Blüten vorhanden so sind Bilder des Blatthäutchens aus Richtung des Blattes am besten geeignet um die Grasarten zu unterschieden. Alle Bilder wurden mit verschiedenen Smartphones angefertigt.

 

Was lernen wir daraus für Flora Incognita? Auch schwierigere Gruppen lassen sich gut automatisch bestimmen, vorausgesetzt man fotografiert die richtigen Pflanzenteile. Diese neu gewonnenen Erkenntnisse werden in die Weiterentwicklung unserer App einfließen. In unserem Experiment erreichten wir für die 31 Arten eine Genauigkeit von > 96%.  Dabei haben wir auch viele Trainingsbilder gewonnen, die der Verlässlichkeit der Flora Incognita App bei Gräsern zukünftig deutlich verbessern werden.

 

 

 

Publikation

Rzanny M, Wittich HC, Mäder P, Deggelmann A, Boho D & Wäldchen J (2022) Image-Based Automated Recognition of 31 Poaceae Species: The Most Relevant Perspectives. Front. Plant Sci. 12:804140. https://doi.org/10.3389/fpls.2021.804140

 

 

 

 

Mit Smartphones den ökologischen Wandel erfassen

Smartphone-Apps zur Pflanzenbestimmung wie „Flora Incognita“ können nicht nur Pflanzenarten erkennen, sie erfassen auch großräumige ökologische Muster. Diese Muster stimmen mit Langzeit-Kartierungen der deutschen Flora erstaunlich gut überein, obwohl sie in kürzester Zeit gewonnen wurden und stark vom Verhalten der App-Nutzer beeinflusst werden. Damit eröffnen sich neue Perspektiven für die schnelle Erfassung von Veränderungen der Biodiversität. Das sind die wesentlichen Erkenntnisse einer Studie, die von einem Forscherteam aus Mitteldeutschland durchgeführt und in der Zeitschrift Ecography veröffentlicht wurde.

Mit Hilfe von Künstlicher Intelligenz können Pflanzenarten heute mit hoher Genauigkeit bestimmt werden. Smartphone-Apps nutzen diese Technologie, um eine unkomplizierte Bestimmung von Pflanzen vor Ort zu ermöglichen. Auch Laien können sich so schnell einen Zugang zur biologischen Vielfalt (Biodiversität) verschaffen. Doch vor dem Hintergrund von Klimawandel, dem Verlust von Lebensräumen und veränderter Landnutzung könnten solche Applikationen noch einen weiteren Nutzen haben: Durch die Erfassung der Standorte der Pflanzenarten entstehen wertvolle Datensätze, die Forschenden Aufschluss darüber geben können, wie sich verschiedene Umweltbedingungen verändern.

Doch wie zuverlässig sind die so gesammelten Informationen – und können sie es mit langfristig angelegten Datensätzen aufnehmen? Genau dieser Frage ist ein Forschungsteam des Deutschen Zentrums für Biodiversitätsforschung (iDiv), des Remote Sensing Center for Earth System Research (RSC4Earth) der Universität Leipzig (UL) und des Helmholtz-Zentrums für Umweltforschung (UFZ), des Max-Planck-Instituts für Biogeochemie (MPI-BGC) und der Technischen Universität Ilmenau gemeinsam nachgegangen. Das Team untersuchte Daten, die zwischen 2018 und 2019 mithilfe der App „Flora Incognita“ in Deutschland erfasst wurden und verglich diese mit der Datenbank FlorKart des Bundesamtes für Naturschutz (BfN). Dabei handelt es sich um eine herkömmliche Langzeit-Kartierung, die mit der Unterstützung von über 5000 Pflanzenexperten über einen Zeitraum von über 70 Jahren erstellt wurde.

App erlaubt Rückschlüsse auf ökologische Muster in Deutschland

Die Forschenden konnten zeigen, dass sich mit den Daten, die in nur zwei Jahren mithilfe der App „Flora Incognita“ gewonnen wurden, ökologische Muster in Deutschland ableiten lassen, die mit einer langfristigen Kartierung der Flora Deutschlands vergleichbar sind. Die Daten spiegelten damit auch wider, welchen Einfluss verschiedene Umweltfaktoren auf die Verbreitung verschiedener Pflanzenarten haben.

Ein direkter Vergleich der beiden Datensätze zeigte jedoch auch, dass die Datensätze aus der App insbesondere dort von denen der herkömmlichen Langzeit-Kartierung abwichen, wo eine geringere Bevölkerungsdichte vorliegt. „Wie viele Daten in einer bestimmten Region mit einer App gesammelt werden, ist natürlich stark davon abhängig, wie viele Smartphone-Nutzende es dort gibt“, sagt Dr. Jana Wäldchen vom MPI-BGC, Mitautorin der Studie und Mitentwicklerin der App. In ländlichen Regionen waren die Abweichungen daher stärker – es sei denn, es handelte sich um beliebte touristische Ziele, wie beispielsweise an der Zugspitze oder auf der Nordsee-Insel Amrum.

Auch die Interessen der Nutzerinnen und Nutzer haben einen Einfluss auf die erfassten Pflanzenarten. „Die mit der App gesammelten Pflanzenobservationen geben das wieder, was die Menschen in der Natur sehen und wofür sie sich interessieren”, sagt Wäldchen. So werden häufige und auffällige Arten öfter bestimmt als die seltenen und unauffälligen Arten. Trotz solcher Besonderheiten hilft die schiere Menge der gesammelten Pflanzenbeobachtungen, bekannte biogeographische Muster zu rekonstruieren. Für ihre Studie konnten die Forschenden auf mehr als 900.000 Observationsdaten zurückgreifen, die während der ersten beiden Jahre seit dem Erscheinen der App entstanden sind.

Automatische Arterkennung birgt große Potentiale

Die Studie zeigt das Potential dieser Art von Datenerfassung für die Biodiversitäts- und Umweltforschung, die schon bald in Strategien zur Langzeit-Kartierung integriert werden könnte. „Wir sind überzeugt, dass die automatische Arterkennung in Zukunft noch viel größere Potentiale hat als bisher angenommen und eine schnelle Erfassung von Änderungen der Biodiversität ermöglichen könnte“, sagt Prof. Miguel Mahecha von der Universität Leipzig, Erstautor und Mitglied des iDiv. Mit einer steigenden Nutzerzahl von Apps wie „Flora Incognita“ könnten Veränderungen der Ökosysteme weltweit in Echtzeit erfasst und analysiert werden.

Die App „Flora Incognita“ wurde gemeinsam von den Gruppen von Dr. Wäldchen am MPI-BGC und von Prof. Patrick Mäder an der TU Ilmenau entwickelt. Sie ist die erste in Deutschland angewandte App zur Pflanzenbestimmung, die tiefe künstliche neuronale Netze (Deep Learning) in diesem Kontext nutzt. Trainiert mit Tausenden von Pflanzenbildern, die von Experten bestimmt wurden, erkennt „Flora Incognita“ mittlerweile über 4800 Pflanzenarten weit über die Landesgrenzen hinaus.

„Bei der Entwicklung von Flora Incognita haben wir festgestellt, dass es einen großen Bedarf und ein großes Interesse an besseren Technologien zur Erfassung von Biodiversitätsdaten gibt. Für uns als Informatiker ist es erfreulich zu sehen, dass die von uns entwickelten Technologien einen wichtigen Beitrag zur Biodiversitätsforschung leisten”, sagt Co-Autor Prof. Patrick Mäder von der TU Ilmenau.

(Kati Kietzmann, iDiv)

Originalpublikation

Miguel D. Mahecha, Michael Rzanny, Guido Kraemer, Patrick Mäder, Marco Seeland, Jana Wäldchen (2021). Crowd-sourced plant occurrence data provide a reliable description of macroecological gradients. Ecography, DOI: 10.1111/ecog.0549