Deep Learning in der phänologischen Pflanzenforschung: Eine systematische Literaturübersicht

Negin Katal hat gemeinsam mit ihrem Team einen Übersichtsartikel über aktuelle Forschungsansätze welche tiefe Lernverfahren (Deep Learning) in der Pflanzenphänologieforschung verwenden verfasst. Die Veröffentlichung gibt einen Überblick über die wichtigsten Ergebnisse aus 24 ausgewählten, von Experten begutachteten Studien, die in den letzten fünf Jahren (2016-2021) veröffentlicht wurden.

Die Phänologie von Pflanzen befasst sich mit der Veränderung des im Jahreverlauf periodisch wiederkehrenden Entwicklungsstufen von Pflanzen (z.B.: Blüte, Blattaustrieb, Blattfall, etc.). Forschungsarbeiten zur Phänologie haben zunehmend an Bedeutung gewonnen, da Klima-schwankungen und -veränderungen Einfluss auf die Phänologie von Pflanzen nehmen. Eine der größten Herausforderungen dabei ist die Entwicklung von Werkzeugen zur effizienten Analyse großer Datenmengen. Tiefe neuronale Netze können bei der Bildverarbeitung massiv unterstützen, dabei helfen Muster zu erkennen und machen es überhaupt erst möglich große Mengen an Bildmaterial effizient auszuwerten.

„[…]Deep Learning soll vor allem die bisher sehr zeit- und kostenintensiven, direkten phänologischen Messungen und Beobachtungen vereinfachen.“

Unser Artikel beschreibt die verwendeteten Methoden, die nach den untersuchten phänologischen Stadien, dem Vegetationstyp, dem räumlichen Maßstab und der Datenerfassung kategorisiert sind.

Einzelbeobachtungen sind beispielsweise menschliche Beobachtungen von Pflanzen, unter dem Kronendach installierte Kameras oder auch Herbarmaterial welches über Jahrhunderte und rund um den Globus gesammelt wurde.

Oberflächennahe Messungen beispielsweise mit PhenoCams, oberflächennahen Digitalkameras, die knapp über dem Kronendach angebracht sind oder mit Drohnen durchgeführt. Über Satelliten-Fernerkundung werden beispielsweiseIndices wie der Spektrale Vegetationsindex (VI) oder der erweiterten Vegetationsindex (EVI) bestimmt.

Außerdem werden Forschungstrends aufgezeigt und diskutiert sowie  vielversprechende zukünftige Richtungen aufgezeigt.

Die wichtigsten Ergebnisse

Die untersuchten Studien wurden in elf verschiedenen Ländern und in verschiedenen Vegetationstypen (Grasland, Wald, Buschland, landwirtschaftliche Flächen) durchgeführt. Die überwiegende Mehrheit der Primärstudien untersucht phänologische Stadien an einzelnen Individuen. Zehn Studien untersuchten die Phänologie auf regionaler Ebene. Keine einzige Studie arbeitet auf globaler Ebene. Tiefe Lernverfahren sollen in erster Linie die bisher sehr zeit- und kostenintensiven direkten phänologischen Messungen vereinfachen.

Im Allgemeinen sind die wichtigsten phänologischen Stadien das Aufbrechen der Blattknospen, Austrieb der Blätter, Blühbeginn, Erscheinen der Früchte, Seneszenz (Laubfärbung) und das Abwerfen der Blätter. Unter den untersuchten Studien beschäftigte sich mehr als die Hälfte entweder mit den Blattaustrieb oder mit dem Blühbeginn.

Dabei wurden unterschiedliche Methoden verwendet, um Trainingsmaterial für die Lernalgorhitmen zu gewinnen. Zwölf Studien verwendeten Bilder aus digitalen Wiederholungsaufnahmen und analysierten diese. Die Publikation enthält ausführliche Informationen über verschiedenen Arten von digitaler Fotografie, die sich besonders für die Bereitstellung dieser Trainingsdaten eignen.

Darüber hinaus in unserem Paper die Deep-Learning-Methoden, welche beim phänologischen Monitoring eingesetzt werden, kategorisiert, verglichen und diskutiert. Wir haben  festgestellt, dass Klassifizierungs- und Segmentierungsmethoden sich als sehr vorteilhaft erwiesen haben und am häufigsten angewendet werden, insbesondere weil sie mühsame und fehleranfällige manuelle Aufgaben ersetzen oder unterstützen können.

Es gibt unterschiedliche Methoden die Phänologie der Pflanzen zu beobachten.

Zukünftige Trends in der phänologischen Forschung durch den Einsatz von Deep Learning

Methoden des maschinellen Lernens benötigen große Datenmengen, um trainiert zu werden. Daher ist die Erhöhung der absoluten Zahl an gesammelten Daten eine der größten Herausforderungen – insbesondere in Regionen oder Ländern, in denen es bisher keine traditionellen phänologischen Beobachtungsnetze gibt. In dem Papier werden Methoden und Instrumente beschrieben, die sich als wichtige Hebel zur Unterstützung dieser Art von Forschung erweisen werden, zum Beispiel:

Die Installation von Kameras unter dem Kronendach, die automatisch Bilder aufnehmen und über lange Zeiträume hinweg übermitteln.

PhenoCams erweisen sich als neuer und vielversprechender Weg, um die Forschung voranzutreiben: Über indirekte Methoden, welche die Veränderungen in Bildern nachverfolgen, indem sie beispielsweise Veränderung der grünen oder roten Farbkoordinaten aus PhenoCam-Bildern bestimmen und dann dann mittels Algorithmen den Zeitpunkt phänologischer Ereignisse abzuleiten. Wir erwarten, dass in Zukunft viele weitere Studien erscheinen werden, die PhenoCam-Bilder über die bisher berechneten Vegetationsfarbindizes hinaus auswerten.

Citizen Science-Daten aus Pflanzenbestimmungs-Apps wie Flora Incognita erweisen sich als langfristige Quelle für Vegetationsdaten. Diese Bilder sind mit einem Zeitstempel und Standortinformationen versehen und können daher ähnlich wie Herbarmaterial wichtige Informationen, z. B. über Blütezeiten, liefern.

Es wird deutlich, dass Deep-Learning-Methoden in der Phänologieforschung erfolgreich angewendet und genutzt können und die traditionelle Erfassung und Auswertung von Daten verbessern und beschleunige können. Wir, als Forschungsteam, freuen uns darüber, ein Teil davon zu sein und laden Sie herzlich dazu ein, selbst eine wichtige Rolle zu spielen – indem Sie Flora Incognita nutzen, um die Vielfalt und den Wandel der Biodiversität um Sie herum zu beobachten und zu dokumentieren.

Wenn Sie Fragen zu unserer Forschung haben, zögern Sie nicht, uns zu kontaktieren! Sie finden Negin Katal zum Beispiel auf Researchgate und Twitter (@katalnegin).

Publikation

Katal, N., Rzanny, M., Mäder, P., & Wäldchen, J. (2022). Deep learning in plant phenological research: A systematic literature review. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.805738