7 Dinge, die Du noch nicht über Flora Incognita wusstest!

Am 22. November 2024 findet in Jena die Lange Nacht der Wissenschaften statt. Über diese Veranstaltung kannst Du Dich auf der Webseite der LNDW informieren: Lange Nacht der Wissenschaften (LNDW) Jena

Wir möchten Dich zu einem ganz besonderen Vortrag einladen, der 19:00 im Hörsaal des Max-Planck-Instituts für Biogeochemie stattfinden wird:

7 Dinge, die Du noch nicht über Flora Incognita wusstest!

Warum musste Pflanzenbestimmung neu gedacht werden? Wie entwickelt und betreibt man eigentlich eine App? Sind die Bestimmungen überhaupt verlässlich und was sagen uns die Daten über den Klimawandel oder den pH-Wert des Bodens? Diese und andere Fragen möchte das Team um Projektleiterin Dr. Jana Wäldchen in einem Vortrag beantworten. Die Wissenschaftler*innen geben hierbei Einblicke „hinter die Kulissen“ der beliebten Pflanzenbestimmungsapp und stehen im Anschluss von 20-21 Uhr für persönliche Gespräche bereit.

Bis dahin!

Kann man Flora Incognita in der Grundschule einsetzen?

Heute unterstützten Teile des Teams Flora Incognita eine Schule in Jena bei ihrem Projekt „Wiese“, um diese Frage zu beantworten. Das Fazit ist klar: Ja.

24 Schülerinnen und Schüler der ersten und zweiten Jahrgangsstufe packten gerade noch ihre Frühstücksdosen weg, als das Team Flora den Klassenraum der „Korallen“ betrat. 24 Augenpaare musterten die Neuankömmlinge, aber schnell gewann die Neugier die Oberhand. Die Kinder kannten bereits den Aufbau einer Blume (Blüte, Blatt und „Furzel“) und durften in den Stunden zuvor schon üben, erste Blüten anhand von Büchern zu bestimmen. Heute sollten sie vom Team Flora eine Einführung in das Thema „Artenvielfalt auf der Wiese“ bekommen. Außerdem wurden wir gebeten zu erklären, was eine App ist, und was es mit Flora Incognita auf sich hat.

Ein kurzer, interaktiver Vortrag, der die Kinder aktiv mit kleinen Quiz-Einlagen integrierte, bereitete auf die anschließende Exkursion nach draußen vor. Was ist eine Wiese, was unterscheidet sie von einem Wald, einem Strand, Röhricht oder einem Flussufer? Ist Gras gleich Gras? Und wie viele verschiedene Blümchen sind wohl auf einer Wiese in Jena zu finden? Mehr als 3? 5? 10? 15 oder sogar 20?

Mit einem Satz iPads und einem mobilen Router ausgestattet ging es anschließend auf eine nahe liegende Wiese, die mager genug war, um Habitat für 50 bis 80 Wildpflanzenarten zu sein. Hier konnten die Kinder in Dreiergruppen mit einem Tablet losziehen und die Pflanzenwelt erkunden. Gelber Hahnenfuß, lilafarbener Storchschnabel, blauer Wiesen-Salbei, weiße Margeriten, aber auch Zypressen-Wolfsmilch oder der kleine Wiesenknopf waren schnell gefunden. In etwa einer Stunde fanden manche der Sieben- bis Achtjährigen 29 verschiedene Pflanzenarten! Dabei war es die größere Herausforderung, Namen wie „Rauhaariger Alant“ oder „Gamander-Ehrenpreis“ zu lesen, als die App zu benutzen. Kleine Kniffe wie das Umdrehen des Geräts, so dass die Kamera nah am Boden ist, oder das Zoomen auf dem Bildschirm, um kleine Blüten groß zu fotografieren, waren schnell gelernt. Allerdings war es für die Schülerinnen und Schüler nur in wenigen Fällen möglich, Gräser und sehr filigrane Pflanzen so zu fotografieren, dass eine Bestimmung möglich war.

Fazit
Für uns war deutlich: Flora Incognita ist eine App, die auch für Schulkinder intuitiv genug ist, um selbstständig bedient zu werden. Die Bestimmungsgenauigkeit ist auch bei nicht optimalen Bildern gut genug, dass Kinder eine Stunde lang Erfolgserlebnisse haben. Natürlich bleiben die komplizierten Namen nicht lange im Kopf hängen, aber was bleibt war eine Stunde Spaß beim Entdecken der Natur und die Erkenntnis, dass eine Wiese doch mehr ist als grünes Gras.

 

Bildnachweis: Susanne Zaehle

Flora-Incognita-Beobachtungen ermöglichen phänologisches Monitoring in ganz Europa

Eine neue Studie aus unserem Forschungsprojekt zeigt, dass Pflanzenbeobachtungen, die mit Bestimmungs-Apps gesammelt werden, Aussagen über die Entwicklungsstadien von Pflanzen zulassen – sowohl kleinräumig als auch europaweit. [Studie lesen]

Warum ist die Dokumentation der Phänologie wichtig?

Viele Pflanzen in gemäßigten Klimazonen durchlaufen jedes Jahr einen Ablauf aus Blüte, Blattaustrieb, Fruchtbildung, Blattfärbung und Blattfall. Diesen Prozess nennt man Phänologie, und er und wird stark von lokalen klimatischen Bedingungen beeinflusst (zum Beispiel von der Anzahl der Tage im Jahr, an denen eine bestimmte zum Wachstum notwendige Mindesttemperatur erreicht wird, siehe „Growing Degree Day“ oder GDD). Deswegen ist es nicht verwunderlich, dass sich der Klimawandel stark auf die Phänologie auswirkt. Beispielsweise beginnt der Frühling mittlerweile früher als noch in den 1950er Jahren, wodurch die Vegetationsperiode viel schneller einsetzt als damals. Solche Veränderungen haben Auswirkungen auf landwirtschaftliche Abläufe und können außerdem auch zu ökologischen Ungleichgewichten führen: Pflanzen beginnen beispielsweise zu blühen, noch bevor ihre Bestäuber aktiv sind. Aber nicht alle Pflanzen reagieren gleichermaßen auf klimatische Veränderungen. Arten, die ein größeres Toleranzspektrum für warme Tage haben, oder bei denen andere Faktoren die Phänologie bestimmen, bleiben von Verschiebungen nahezu unberücksichtigt. Um ein wirklich präzises Verständnis für den Einfluss des Klimas auf die Pflanzenphänologie zu erlangen, ist es wichtig, die Phänologie von möglichst vielen verschiedenen Arten, in unterschiedlichen Ländern und geografischen Regionen zu dokumentieren.

Wie funktioniert das phänologische Monitoring?

Phänologie wird heute bereits über verschiedene Methoden dokumentiert. Satellitenbilder erkennen das Ergrünen ganzer Landstriche, Kameras in Baumkronen fertigen automatisierte Bilderserien über den Zustand der darunter liegenden Vegetationsschicht an. Solche Datensätze erlauben Aussagen über große Skalen, lassen aber kaum Rückschlüsse auf die Phänologie von einzelnen Arten oder gar Individuen zu. Hierfür gibt es Initiativen, die mit Hilfe von geschulten Freiwilligen durchgeführt werden. Die Zahl dieser Bürgerwissenschaftler:innen geht jedoch immer weiter zurück, und zudem ist diese Art der Datenerhebung in der Regel auf bestimmte Pflanzenarten (oftmals Bäume), Länder oder noch kleinere Regionen beschränkt.

Kann man mit Flora Incognita Phänologie dokumentieren?

Daten, die über Pflanzenbestimmungs-Apps wie Flora Incognita erhoben werden, können hier eine Lösung sein. Das haben die Wissenschaftler:innen unseres Projekts bereits 2023 nachgewiesen: Pflanzen werden vor allem dann wahrgenommen und fotografiert, wenn sie einerseits auffällig sind und zudem blühen, bunte Früchte tragen oder Herbstlaub. So entstehen Beobachtungsmuster, die phänologische Events anzeigen. Diese Muster decken sich in vielen Fällen mit denen, die der Deutsche Wetterdienst (DWD) in Bezug auf den Blühbeginn von Arten in Deutschland veröffentlicht. Angenommen, der DWD registriert in einem Jahr einen früheren Blühbeginn des Holunders als im Vorjahr, dann spiegelt sich diese Verschiebung auch in den Bestimmungsanfragen von Flora Incognita wider.

Details zu dieser Studie findest Du in diesem Artikel: Phänologie-Monitoring mit Flora-Incognita-Pflanzenbeobachtungen.

Neue Studie zeigt Phänologien und bioklimatische Zusammenhänge über ganz Europa

Unsere neue Publikation zeigt nun, dass Smartphone-Beobachtungen sogar bekannte überregionale phänologische Muster widerspiegeln, wie z. B.

  • die spätere Blüte vieler Arten in Nord- und Osteuropa oder
  • die spätere Blüte vieler Arten in größeren Höhenlagen, aber auch
  • eine europaweite Verschiebung des Blühbeginns zwischen den Jahren, wie es bereits für Deutschland nachgewiesen wurde.

Das beweist, dass die von Pflanzenbestimmungs-Apps generierten Daten eine zuverlässige Quelle für das Vorkommen von Pflanzen zu einem bestimmten Zeitpunkt und an einem bestimmten Ort sind und sich gut für die Beantwortung weiterer Forschungsfragen eignen – auch in größeren Maßstäben.

Die Ergebnisse der Studie im Überblick

Pflanzen blühen eher, wenn es mehr warme Tage gibt

Wir haben die europaweiten Beobachtungsdaten (Quellen: Flora Incognita, aber auch Meldeplattformen wie iNaturalist) aus 2020 und 2021 von 20 verschiedenen Pflanzenarten miteinander verglichen. Dabei konnten wir feststellen, dass insbesondere die Frühlingsblüher wie beispielsweise der Gamander-Ehrenpreis Veronica chamaedrys 2020 zeitiger geblüht haben – bis zu zwei Wochen eher als 2021.

 

Eine Analyse der Temperatur am jeweiligen Standort zeigte auf, dass es im Frühjahr 2020 deutlich mehr Tage gab, an denen im Mittel 5°C oder darüber erreicht wurden, die Pflanzen also in kürzerer Zeit mehr Wärme aufnehmen konnten. Bei Arten, die später im Jahr blühen, wie der Rainfarn Tanacetum vulgare oder der Gewöhnliche Natternkopf Echium vulgare, war der Effekt weniger ausgeprägt.

Pflanzen blühen später, wenn sie in höheren Lagen, weiter im Osten oder im Norden wachsen

Es waren jedoch nicht nur Muster zwischen den Jahren, sondern auch zwischen verschiedenen Regionen zu erkennen. Es ist bekannt, dass die gleiche Art je nach Standort zu unterschiedlichen Zeiten blüht. (-> Hopkins‘ bioklimatisches Gesetz) Wenn beispielsweise die gleiche Pflanzenart in Schweden und Spanien vorkommt, blüht die spanische Pflanze einige Tage oder sogar Wochen früher als die im Norden. Die genaue Anzahl der Tage bis zur Blüte variiert natürlich je nach Pflanzenart. Auch diese Gesetzmäßigkeit lässt sich mit Flora-Incognita-Daten abbilden:

Diese Abbildung zeigt den Median der Beobachtungsdaten für die drei bereits vorgestellten Pflanzenarten. Rosa und orange Farben zeigen an, dass die Art am jeweiligen Ort früh im Jahr blühte, während die gleiche Art an einem anderen Standort später blühte (dunkelgrün und blau codiert). Deutlich setzen sich nicht nur die Längen- und Breitengrade ab, sondern auch die Mittel- und Hochgebirge. Details zu den Daten und angewandten Methoden sind in der Publikation ersichtlich, die am E nde des Artikels verlinkt ist.

Alle untersuchten 20 Pflanzenarten ließen sich in eines von drei Hauptmustern eingliedern, die hier beispielhaft abgebildet sind. Veronica chamaedrys zeigt im Jahr 2020 mehr rötliche Farben als im Jahr 2021; wie bereits erwähnt ist dies auf die wärmeren Temperaturen im Frühjahr 2020 zurückzuführen. Echium vulgare zeigt über die Jahre hinweg nur geringfügige Reaktionen auf unterschiedliche Klimabedingungen, und für Tanacetum vulgare konnten wir feststellen, dass Phänologie im Vergleich zu den anderen Arten ein umgekehrtes Muster aufweist: Rainfarn blüht in östlichen, nördlichen und hohen Lagen eher als seine Geschwister in westlichen, südlichen und niedrig gelegeneren Teilen Europas. Auch dieses Phänomen wurde bereits in der wissenschaftlichen Literatur beschrieben. Arten, die eigentlich viele warme Tage bis zur Blüte brauchen, haben sich an kalte Standorte mit einer Verkürzung der Vegetationszeit und einem zeitigeren Blühtermin angepasst.

Zusammenfassung

Die neue Publikation zeigt zum ersten Mal auf einer europaweiten Skala zeitliche und räumliche Verschiebungen von Pflanzenphänologie anhand von Daten, die nicht gezielt für diesen Zweck gesammelt wurden. Für die Nutzer:innen von Flora Incognita bedeutet  das, dass jede einzelne Pflanzenbestimmung mehr als nur die eigene Neugierde befriedigt. Durch die Dokumentation von Pflanzenvorkommen zu einer bestimmten Zeit an einem bestimmten Ort schaffen sie eine wachsende und robuste Datenquelle zur Phänologie, die keine nationale Grenzen kennt, neue Arten mit einschließt und zahlreiche weiterführende Forschungsfragen beantworten kann.

Vielen Dank für Eure Neugier.

Die neue Veröffentlichung ist ab sofort frei verfügbar:

Rzanny, M., Mäder, P., Wittich, H.C. et al. Opportunistic plant observations reveal spatial and temporal gradients in phenology. npj biodivers 3, 5 (2024). https://doi.org/10.1038/s44185-024-00037-7

Veronica chamaedrys im Titelbild: aufgenommen von Ilse Schönfelder.

„Sonja Bernadotte-Preis für Wege zur Naturerziehung“ 2023 für Flora Incognita

Der „Sonja-Bernadotte-Preis für Wege zur Naturerziehung“ wird jährlich von der Deutschen Gartenbau-Gesellschaft 1822 e.V. (DGG) verliehen und ist als Auszeichnung für herausragende Leistungen für Wege zur Naturerziehung gedacht.
Der Preis soll den Stellenwert von Naturerziehung und Naturerfahrung bewusst machen, das Engagement für die Naturerziehung stärken und den Einsatz dafür finanziell unterstützen. Den Sonja-Bernadotte-Preis  im Jahr 2023 erhält die Pflanzenbestimmungs-App Flora Incognita. Das Kuratorium begründete seine Entscheidung damit, dass „Deutschlands beliebteste Pflanzenbestimmungs-App nicht nur von Laien geschätzt und millionenfach genutzt, sondern mittlerweile auch von Botaniker:innen eingesetzt und empfohlen wird.“ In der Erklärung für die Auswahl wurde insbesondere der hohe wissenschaftliche Anspruch und die Bedeutung als interdisziplinäres Citizen-Science-Projekt-hervorgehoben. „Sie ist ein exzellentes Beispiel für den sinnvollen und gewinnbringenden Einsatz von KI, für die Demokratisierung von Wissen und für moderne „Wege der Naturerziehung“, sowohl in der formellen Bildung von Kindern, Jugendlichen und Studierenden als auch für die informelle Erwachsenenbildung.“

Dr. Jana Wäldchen vom Max-Planck-Institut für Biogeochemie Jena und Prof. Patrick Mäder von der Technischen Universität Ilmenau nahmen die Auszeichnung am 20. Oktober 2023 in Jüchen auf Schloss Dyck in Empfang.

Mehr Information: Sonja Bernadotte-Preis

Jana Wäldchen und Patrick Mäder nahmen den Sonja Bernadotte-Preis 2023 in Empfang.

Ilmenauer Wissenschaftsnacht und Max-Planck-Tag 2023

Ilmenau am Abend des 1. Juli 2023. Menschen schauen auf ihr Mobiltelefon, um herauszufinden, ob sie aufgrund der Wetterlage gleich einen Schirm brauchen. Aber ist das schon alles? Nein!

Manche von ihnen schauen auf ihr Handy, um den Steckbrief einer rosablühenden Wildpflanze zu lesen: Epilobium angustifolium steht da, das Schmalblättriges Weidenröschen. Gehört zur Familie der Nachtkerzen und wächst am Waldrand. Oder Hypericum perforatum, das Echte Johanniskraut. „Das kenne ich als Tee! So sieht das also aus?“ Ja!

Diese Situationen und viele ähnliche konnten wir erleben, als sich am 1. Juli 2023 die Türen (unter anderem) des Zuse-Baus an der TU Ilmenau zur Ilmenauer Wissenschaftsnacht öffneten und viele interessierte Menschen vorbeikamen, um „Flora Incognita mal persönlich zu treffen“. Und wir waren gut vorbereitet: Mit blühenden Wildpflanzen in Töpfen, einem App-Quiz und botanischen Führungen über den Uni-Campus, aber auch mit weitergehenden Angeboten wie dem Mikroskopieren von Phytoplankton oder Informationsständen die erklärten, wie die Künstliche Intelligenz hinter Flora Incognita bereits genutzt wird, um Ackerwildkräuter über Drohnenaufnahmen zu bestimmen, oder um Städteplaner:innen zu unterstützen, wildbienenfreundliche Landschaftsgestaltung zu unternehmen.

Ein weiterer Fokus unserer Präsentation war die Aufklärung darüber, wie wir mit den Pflanzenbestimmungen der Flora-Incognita-App Forschung betreiben. Unsere Wissenschaftler:innen wurden nicht müde darzulegen, dass sich in den Daten bereits phänologische Verschiebungen in den Blühphasen von Pflanzen nachweisen lassen, oder dass sich die Verbreitung von invasiven Arten wie dem Drüsigen Springkraut überwachen lässt. In Anbetracht des fortschreitenden Klimawandels sind solche Informationen sehr wertvoll; und mit der neuen Projektfunktion von Flora Incognita ist es für Naturschutzinteressierte leicht, auch eigene Citizen-Science-Projekte durchzuführen und die so erhobenen Beobachtungsdaten selbst auszuwerten.

Es ist immer wieder etwas Besonderes, mit Langzeit-Fans ins Gespräch zu kommen, und zu erfahren, welche Aspekte der App besonders beliebt und welche noch ausbaufähig sind. Aber ebenso stolz sind wir, wenn wir Menschen die Skepsis nehmen können, die App einfach mal auszuprobieren und anzufangen, Pflanzen zu bestimmen. Fun Fact: Insgeheim zählen wir bei solchen Veranstaltungen gern, wie viele Neuinstallationen wir durch unseren Einsatz vor Ort erreichen konnten!

Aber nicht nur in Ilmenau konnten wir überzeugen: Auch in Göttingen, wo am 23. Juni anlässlich der 75-Jahrfeier der Max-Planck-Gesellschaft der Max-Planck-Tag stattfand, waren wir mit einem Informationsstand auf dem Marktplatz präsent. Leider waren aufgrund des Dauerregens nicht viele Menschen unterwegs, aber das ermöglichte es uns, mit den Interessierten umso länger und intensiver über unsere App, den Verlust der Biodiversität und unsere Forschungsarbeit zu sprechen. In Göttingen waren wir gemeinsam mit den Wissenschaftler:innen des ATTO-Towers (MPI für Biogeochemie Jena und MPI für Chemie Mainz) am Start, die mit einer VR-Station einluden, den Messturm im Amazonas-Regenwald zu erklimmen und über ihre Klimaforschung zu sprechen. Ein besonderes Highlight des Tages war der Besuch von Prof. Patrick Cramer, dem neuen Präsidenten der Max-Planck-Gesellschaft, an unserem Stand.

Wir möchten an dieser Stelle ein ganz herzliches Dankeschön aussprechen an alle, die sich die Zeit genommen haben, uns Lob und Kritik zu überbringen, Fragen zu stellen und neugierig zu sein. Danke auch an Manuel Maidorn und die Mitarbeiter:innen des Max-Planck-Instituts für Dynamik und Selbstorganisation in Göttingen für das Bereitstellen der vielen Pflanzen am Stand! Außerdem gilt unser Dank unseren Förderern, die diese Öffentlichkeitsarbeit möglich machen.

Bis bald!


Bildnachweis Titelbild: Max-Planck-Gesellschaft, Fotograf: David Ausserhofer

So exportierst Du Deine Flora-Incognita-Funde in individuelle Karten (Google Maps, QGIS und R)

Oft erreicht uns die Frage, ob man sich seine Pflanzenfunde auch außerhalb der Flora-Incognita-App ansehen kann, zum Beispiel in Google Maps oder in einem Geoinformationssystem (GIS). Die Antwort ist einfach: Ja, das geht! In diesem Artikel findest Du 3 Anleitungen dafür – je nach dem, was Dein Anwendungsfall ist.

Flora-Incognita-Beobachtungen aus der App heraus exportieren

Egal für welche Methode Du Dich entscheidest, zunächst musst Du Deine Beobachtungen aus der Flora-Incognita-App exportieren.

1) Öffne dafür Deine Beobachtungsliste unter Meine Beobachtungen von der Startseite und tippe oben rechts auf das Teilen-Symbol. Du kannst nun eine .csv- oder eine .gpx-Datei über verschiedene Wege auf Deinen Rechner übertragen.

2) Achtung, beim Export via GPX können nur Beobachtungen berücksichtigt werden, die den Fundort mit gespeichert haben.

3) Möchtest Du Deine Beobachtungen inklusiver der Bilder exportieren, empfehlen wir, die Beobachtungsliste zunächst begrenzend zu filtern, um die Anzahl der zu exportierenden Beobachtungen zu verringern. Der Grund hierfür ist die enorm ansteigende Dateigröße, die durch die Bilder entsteht.

Flora-Incognita-Beobachtungen in Google Maps importieren

Mit dieser Methode kannst Du Dir Deine Funde in Google Maps am Desktop anzeigen lassen. Es wird keine zusätzliche Software benötigt.

  1. Gehe zu https://www.google.com/intl/de_de/maps/about/mymaps/ und starte unter Jetzt starten ein neues Projekt.
  2. Klicke auf dem Tab Eigene auf Neue Karte Erstellen. Du erhältst eine leere Karte mit einem eigenen Kontextmenü:
    Leere Google-Maps-Karte
  3. Klicke unter Unbenannte Ebene auf Importieren und wähle die zuvor exportierte .csv-Datei aus.
  4. Im folgenden Menü wähle die Spalten latitude und longitude. Klicke Weiter.
  5. Wähle nun aus, womit Deine Fundpunkte beschriftet sein sollen. Wähle name für den Trivialnamen oder scientific name für den wissenschaftlichen Namen. Klicke Abschließen. Achtung: Die Punkte sind nun zwar markiert, aber die Beschriftung noch nicht sichtbar.
  6. Im Menü-Fenster klicke auf Einheitlicher Stil und wähle unter Label aus, welchen Namen Du angezeigt haben möchtest.
  7. Unter Basiskarte kannst Du die zugrundeliegende Karte noch nach Belieben verändern:
    GoogleMaps-Screenshot der einen Feldweg zeigt, an welchem Pflanzenfunde mit Flora Incognita dokumentiert wurden.
  8. Weitere individuelle Anpassungen sind unter den verfügbaren Menüpunkten möglich. Ein Klick auf den Fundpunkt zeigt die übertragenen Meta-Informationen an.

Flora-Incognita-Beobachtungen in QGIS importieren

QGIS ist eine professionelle GIS-Anwendung, die auf der Grundlage von Freier- und Open-Source-Software (FOSS) entwickelt wurde. Diese Option zu wählen ist sinnvoll, wenn Du Dich beruflich oder in Deiner Freizeit mit GIS beschäftigst.

  1. Öffne QGIS und lege ein leeres Projekt an (Project -> New).
  2. Im linken Menü Browser wähle unter XYZ Tiles per Doppelklick Deine Kartengrundlage aus, in unserem Beispiel ist das OpenStreetMap. Du kannst nun bereits in die Karte hineinzoomen.
  3. Klicke in die Hauptnavigation im Anwendungsfenster auf Layer und wähle aus dem Kontextmenü Layer hinzufügen und folgend Getrennte Textdatei als Layer hinzufügen
    Screenshot aus QGIS, der eine Weltkarte zeigt und die im Text beschriebenen Menüs in ausgeklappter Form.
  4. Wähle in dem nun verfügbaren Fenster ganz oben unter Dateiname die aus der App exportierte .csv-Datei aus. Prüfe anschließend das ausgelesene Dateiformat auf die folgenden Parameter:
    • Dateiformat: CSV (kommagetrennte Werte)
    • Geometriedefinition: X-Feld: longitude; Y-Feld: latitude
    • Geometrie – KBS: EPSG:4326 – WGS 84

    Deine Daten sollten diesen Aufbau haben:
    Screenshot einer Datentabelle, die die Spalten id, date, scientific name und name zeigt, und mehrer Zeilen mit entsprechenden Einträgen.

  5. Klicke unten rechts auf Hinzufügen und schließe das Fenster. Du siehst Deine Funde nun in der Karte, aber noch ohne Beschriftung. Wie Du deine Funde individuell angepasst darstellen kannst, lernst Du nun.
  6. Mache einen Rechtsklick links neben der Karte im Layer-Feld auf Deinen Flora-Incognita-Layer. Wähle Eigenschaften.
  7. Unter Beschriftung ändere die Einstellung von Keine Beschriftung zu Einzelne Beschriftung. Darunter unter Wert kannst Du wählen, ob Du den wissenschaftlichen oder den Trivialnamen angezeigt haben möchtest. Bestätige mit OK. Das Ergebnis sieht zum Beispiel so aus:
    Screenshot aus QGIS, welcher einen stilisierten Ackerranstreifen zeigt, auf dem viele Pflanzenfunde als Punkte zu sehen sind, mit dem dazugehörigen deuteschen Namen.

Flora-Incognita-Beobachtungen in R importieren

R ist eine freie Programmiersprache für statistische Berechnungen und Grafiken. Für diese Anleitung müssen mit der dafür vorgesehenen Software vorbereitete Skripte ausgeführt werden. Grundwissen im Umgang mit R ist demnach notwendig.

  1. Gehe zu https://www.r-project.org und installiere die aktuelle Version des Programms R.
  2. Gehe zu https://posit.co/products/open-source/rstudio/ und installiere das aktuelle RStudio.
  3. Installiere und lade die notwendigen Bibliotheken.
    install.packages("leaflet")
    install.packages("leaflet.extras2")
    install.packages("htmlwidgets")


    library(leaflet)
    library(leaflet.extras2)
    library(htmlwidgets)
  1. Lies Deine .csv-Datei ein.
    dat<-read.csv("/dein pfad/deine_datei.csv",header=TRUE)

 

  1. Erstelle und lade die Karte. Eng benachbarte Beobachtungen sind geclustert.map1<-leaflet(data = dat) %>%
    addProviderTiles('OpenStreetMap.Mapnik' ) %>%
    addCircleMarkers(lng = ~longitude, lat = ~latitude,
    label = ~scientific.name, radius=7,labelOptions = labelOptions(style = list("color" = "black"),
    noHide = T, textOnly=T,textsize = "10px",offset = c(1, 12)),
    color="black",clusterOptions = markerClusterOptions(spiderfyOnMaxZoom=T))


    map1
  1. Füge die Pflanzenfunde der Karte hinzu. Soll der deutsche Name angezeigt werden muss „scientific.name“ durch „name“ ersetzt werden.map2<-leaflet(data = dat) %>%
    addProviderTiles('OpenStreetMap.Mapnik' ) %>%
    addLabelOnlyMarkers(lng = ~longitude, lat = ~latitude,group="labs",
    label = ~scientific.name,labelOptions = labelOptions(style = list("color" = "black"),
    noHide = T, textOnly=T,textsize = "10px",offset = c(1,12))) %>%
    addCircleMarkers(lng = ~longitude, lat = ~latitude,color="black") %>%
    addCircleMarkers(lng = ~longitude, lat = ~latitude, radius=2, label = ~scientific.name, color="white")
    addLabelgun(map2,group="labs")


    map2
  1. Exportiere Deine Karte als .html-Datei
    saveWidget(map2, file="/dein pfad/map.html")

    Screenshot aus der Karte, die mit R generiert wurde. Zu sehen sind drei Pflanzenfunde in einer Seenlandschaft.

Hier kannst Du Dir die Anleitung auch als Textdatei herunterladen: R_MapExport

Pressemitteilung: Neue KI für Flora Incognita

„Flora Incognita“, Deutschlands beliebteste Pflanzenbestimmungs-App, wurde durch eine neue Künstliche Intelligenz weiter aufgewertet – die Anzahl der bestimmbaren Pflanzenarten hat sich dadurch verdreifacht: Weltweit können nun rund 16.000 Arten bestimmt werden. Die App, die jetzt in 20 Sprachen verfügbar ist, funktioniert nun zudem auch im Offline-Modus und ihr digitales Bildungsangebot wurde um eine Vielzahl an neuen Pflanzen-Informationen deutlich erweitert.

Wissenschaftlerinnen und Wissenschaftler der Technischen Universität Ilmenau und des Max-Planck-Instituts für Biogeochemie in Jena verbesserten Flora Incognita mit einer neuen technologischen Basis aus selbstlernenden, tiefen neuronalen Netzen. Prof. Patrick Mäder, Leiter des Fachgebiets Datenintensive Systeme und Visualisierung und Projektleiter von Flora Incognita an der TU Ilmenau, und das Forscherteam aus Jena haben in den letzten Monaten große Anstrengungen unternommen, für diese Netze innovative Machine-Learning-Trainingsmethoden zu entwickeln: „Wir haben die neuen Methoden gleich für die Flora-Incognita-App angewendet und so konnten in unserem Rechenzentrum an der TU Ilmenau Millionen Bilder von Pflanzen weltweit verarbeitet werden. Mit den richtigen Bildern sind die neuen Netze jetzt in der Lage, viele Pflanzenarten mit einer Genauigkeit von nahezu 100 Prozent zu klassifizieren“.

Für die neue App-Version wurden außerdem die Benutzerfreundlichkeit und die Barrierefreiheit verbessert. So können Pflanzenfunde jetzt auch offline, also ohne Netzempfang, in der Natur angelegt und später (mit Internetzugang) automatisch bestimmt werden. Deutschlands beliebteste Pflanzenbestimmungsapp wird auch an Schulen und Universitäten von Pädagoginnen und Pädagogen zur Unterstützung der Lehre eingesetzt. Da Schulgeräte selten über mobiles Internet verfügen, profitiert insbesondere diese Zielgruppe vom neuen Offline-Modus.

Außerdem wurde ein neues spielerisches Element eingeführt: Nutzerinnen und Nutzer können für das Dokumentieren bestimmter Pflanzengruppen Abzeichen sammeln. So haben sie nicht nur selbst über einen langen Zeitraum Freude am Pflanzensammeln, sie stärken auch das Bewusstsein für Artenvielfalt in ihrem sozialen Umfeld. Die App schafft damit gleichzeitig einen Anreiz, auch schon bekannte Arten oder andere Pflanzengruppen zu dokumentieren, was den Wissenschaftlerinnen und Wissenschaftlern wichtige Daten für ihre Forschungsprojekte liefert.

Neu ist zudem die Möglichkeit, Flora Incognita zur Durchführung von Citizen-Science-Projekten nutzen zu können. So können am Projekt beteiligte Laien wie gewohnt Pflanzen bestimmen, zum Beispiel invasive Arten einer Region, besondere Bäume, oder die Pflanzenvielfalt eines Schulgeländes.  Die Verantwortlichen des Citizen-Science-Projekts bekommen dann die anonymisierten Beobachtungsdaten zur wissenschaftlichen und naturschutzfachlichen Auswertung zugeschickt.

Aber nicht nur die Technik der Flora-Incognita-App ist besser geworden. Auch die Datengrundlage und die hinterlegten Informationen wurden erweitert. Dazu haben auch Bürgerwissenschaftlerinnen und -wissenschaftler, also interessierte Laien, beigetragen. Mit der speziell für das wissenschaftliche Dokumentieren von Pflanzen entwickelten „Flora Capture“-App wurden bereits Tausende Aufnahmen aus definierten Perspektiven übermittelt, die zu einer deutlichen Verbesserung der Bestimmungsgenauigkeit der deutschen Flora, insbesondere kritischer Pflanzengruppen wie Süßgräsern, beigetragen haben. Studierende der Fachhochschule Erfurt beteiligten sich bei der Aufnahme tausender Bäume, sodass eine Bestimmung nun auch im Winter anhand von Knospenbildern möglich ist. Weitere bedeutsame Datengrundlagen für die Erweiterung der bestimmbaren Arten lieferten die Autoren des Werks „African Plants – A Photo Guide“, und Mitarbeiterinnen und Mitarbeiter der Hochschule Geisenheim und der Hochschule für Technik und Wirtschaft Dresden.

Co-Projektleiterin Dr. Jana Wäldchen vom Max-Planck-Institut für Biogeochemie Jena kündigt an, dass in den nächsten Monaten auch das zusätzliche Informationsangebot in der App weiter ausgebaut werden soll: „Wir planen, die Pflanzensteckbriefe mit weiteren spannenden Fakten zu ergänzen. Wir denken da beispielweise an Informationen darüber, wie bestäuberfreundlich eine Art ist, oder ob sie invasiv ist. Damit möchten wir unseren Nutzerinnen und Nutzern nach der Bestimmung interessantes Pflanzenwissen mitgeben.“

 

Diese Pressemitteilung wurde am 18. April 2023 von der TU Ilmenau ausgegeben.

 

 

 

Flora Incognita jetzt mit Offline-Modus

Wir freuen uns, Euch mit einem neuen Release der Flora-Incognita-App neben zahlreichen kleinen Bugfixes zwei paar Updates geben zu können, nach denen viele gefragt haben:
– ein Offline-Modus
– Abzeichen für 2023

 

Ein Offline-Modus für Flora Incognita
Oft ist es so, dass die spannendsten Pflanzen dort wachsen, wo gerade keine Netzabdeckung ist, oder Pädagog:innen die App im Bildungskontext einsetzen wollen, aber die Notwendigkeit einer mobilen Datenverbindung das nicht möglich macht. Jetzt haben wir eine Lösung dafür: Den Offline-Modus. Was kann er?

Er ermöglicht es, Pflanzen mit der Flora-Incognita-App aufzunehmen und als Beobachtung zu speichern. Ihr erhaltet allerdings keinen Pflanzennamen, sondern bekommt die Beobachtung als „unbekanntes Kraut“, „unbekannter Baum“ etc. in Eurer Beobachtungsliste abgelegt. Das entspricht auch dem Prozess, den Botaniker:innen verfolgen würden: Was nicht erkannt wird, wird mitgenommen und später nachbestimmt. So nun auch mit der App. Wenn Ihr wieder zu Hause seid (oder irgendwo mit Zugang zum Internet), könnt Ihr die unbekannten Beobachtungen per Klick bestimmen lassen und Euch die Steckbriefe zu den Pflanzenfunden durchlesen – wie gewohnt.
Übrigens: Auch Pflanzen, die im Offline-Modus bestimmt wurden, tragen zum weltweiten Monitoring der Pflanzenvielfalt bei- sofern Ihr den Standort freigegeben habt. Der Fundort der Pflanze wird in dem Fall als Meta-Information an der Observation gespeichert.

 

Abzeichen 2023
Mit der Einführung der Abzeichen letztes Jahr haben wir vielen Nutzer:innen eine große Freude bereitet, und gleich in den ersten Tagen des Jahreswechsels erreichten uns Anfragen, ob es denn für dieses Jahr auch neue Abzeichen geben wird. Ja! Diese sind jetzt fertig implementiert und warten darauf, von Euch gesammelt zu werden:
– Pflanze des Jahres 2023: Sammelt die Kleine Braunelle (Prunella vulgaris)
– Baum des Jahres 2023: Sammelt eine Moor-Birke (Betula pubescens)
– Giftpflanze des Jahres 2023: Sammelt eine Petersilie (Petroselinum crispum)
– Heilpflanze des Jahres 2023: Sammelt eine Weinrebe (Vitis vinifera)
– Pflanzengesellschaft des Jahres: Sammelt einen Vertreter der Strandlingsrasen (Littorelletea uniflorae)

Viel Spaß!

Wenn Euch unsere App und das Pflanzenbestimmen Spaß macht, würden wir uns sehr über eine Bewertung und ein paar nette Worte im App-Store freuen. Vielen Dank!

Pflanzenbestimmungs-App „Flora Incognita“ mit Thüringer Forschungspreis ausgezeichnet

 

 

Ein Drittel der in Deutschland vorkommenden Pflanzenarten steht als gefährdet auf der Roten Liste. Gleichzeitig sinkt die Anzahl der Menschen mit Artenkenntnis kontinuierlich. Doch wie können wir schützen, was wir nicht kennen? Das Forschungsprojekt Flora Incognita verbindet Smartphones, künstliche Intelligenz und Bürgerbeteiligung in einer App, die interaktiv und automatisch Pflanzen anhand von Bildaufnahmen erkennt. Mit jeder erfolgreichen Anwendung lernt die App dazu und verbessert ihre Erkennungsgenauigkeit. Gleichzeitig entstehen durch die Speicherung der erkannten Arten und Standorte wertvolle Datensätze, um Fragen des Artenschutzes und der Biodiversität zu beantworten. Derzeit nutzen bereits über 1 Mio. Menschen die kostenlose App, von begeisterten Laien bis hin zum Biologie-Professor. Das interdisziplinäre Projektteam vom Max-Planck-Institut für Biogeochemie in Jena und der TU Ilmenau wurde für seine Entwicklung mit dem Thüringer Forschungspreis in der Kategorie Angewandte Forschung geehrt.

Neben dem Klimawandel stellt der Verlust der biologischen Vielfalt eine der größten Bedrohungen für die Menschheit dar. Pflanzen bilden die Grundlage der Nahrungsnetze auf unserer Erde. Verändert sich deren Zusammensetzung, so wird das gesamte Ökosystem mit seinen wichtigen Funktionen für Tiere und Menschen beeinflusst. Eine zentrale Forderung des Artenschutzes liegt daher in der umfassenden Bestandserhebung und Überwachung der pflanzlichen Biodiversität. Doch immer weniger Menschen, selbst akademisch ausgebildete Biologen, können heute eine größere Zahl von Pflanzenarten sicher erkennen und ihr Vorkommen in einen ökologischen Zusammenhang stellen. Wie soll man für den Schutz der Artenvielfalt werben, wenn diese der Bevölkerung praktisch nicht bekannt ist?

„Wir entwickelten hierfür ein Verfahren zur interaktiven, automatischen Pflanzenbestimmung mit einer Smartphone-App“ erklärt die Biologin Dr. Jana Wäldchen, Projektleiterin am Max-Planck-Institut für Biogeochemie in Jena. „Denn was lag näher, als unsere botanischen Artenkenntnisse mit den neuesten Technologien des maschinellen Lernens und der ständig wachsenden Verfügbarkeit von mobilen Endgeräten wie Smartphones und Tablets zu kombinieren?“ Mit der Kamera des Smartphones fotografieren die Nutzer*innen die Blüte sowie gegebenenfalls das Blatt der unbekannten Pflanze, und in Sekundenschnelle erhalten sie von der App Informationen über die erkannte Art – nicht nur den Namen, sondern auch weiterführende Informationen.

Schon lange arbeiten Wissenschaftler*innen daran, Pflanzen anhand von Bildern automatisch zu erkennen. Die bisher entwickelten Modelle konnten botanische Merkmale wie z. B. Blatt- und Blütenformen oder Blütenfarbe extrahieren, aber die Auswahl der Merkmale war bereits problematisch. Für eine sichere Bestimmung mussten die Nutzer die entscheidenden Merkmale individuell auswählen, was sich als sehr arbeitsintensiv erwies und Expertenwissen erforderte. Klassifizierungen von mehr als 100 Arten waren kaum möglich.

Es gab lange kein Verfahren, das Pflanzenmerkmale aus einem Bild ohne vom Menschen vorgegebene Mustererkennung selbstständig extrahieren konnte. „In den letzten fünf Jahren haben wir hier durch tieflernende künstliche neuronale Netze (Deep Learning) und im Bereich Bildverarbeitung einen fundamentalen Durchbruch erzielt“, bestätigt der Informatiker Prof. Patrick Mäder (JP), Projektleiter an der TU Ilmenau. Dem Bilderkennungsverfahren der Flora Incognita App liegt ein künstliches neuronales Netzwerk zugrunde. Gefüttert mit mehr als zwei Millionen Pflanzenbildern, erlernte das Netzwerk von Flora Incognita die unterschiedlichen Pflanzenmerkmale von über 4800 Arten. Um Pflanzen möglichst genau zu bestimmen, ermittelt Flora Incognita den Bestimmungsort und gleicht diesen automatisch mit hinterlegten Verbreitungs-, Boden- und Klimadaten ab, was die Trefferquote weiter verbessert. Durch Programmierung eines situationsabhängigen Bestimmungsvorgangs kann die App außerdem, in Abhängigkeit von der ersten Trefferquote, weitere spezifische Informationen oder Bilder anfordern. Welche unterschiedlichen Bildperspektiven für die Bestimmung der Pflanzen am wichtigsten sind, wurde in umfangreichen wissenschaftlichen Studien untersucht.

Die kostenlose und werbefreie Flora Incognita App wurde bereits im Frühjahr 2018 veröffentlicht. Seit ihrem Erscheinen verzeichnet die App mehr als 1 Millionen Installationen und über 8 Millionen erfolgreiche Bestimmungen. Nicht nur Laien verwenden Flora Incognita, auch in botanischen Fachkreisen wird die App äußerst positiv bewertet und empfohlen.

Auch die Wissenschaft profitiert von der App: Durch die Speicherung der erkannten Arten und ihrer Standorte entstehen äußerst wertvolle Datensätze, mit denen Fragen des Artenschutzes und der Biodiversität erforscht werden können. Langfristig ermöglichen die Daten der Flora Incognita App neue Erkenntnisse zum Beispiel zu den Fragen: Wann und wo blühen welche Arten? Wie stark variieren die Eigenschaften einer Pflanzenart? Wie verändern sich die Zusammensetzung und Standorte der Pflanzen im Zusammenhang mit dem Klimawandel und der Art der Landnutzung? Erste Ergebnisse hierzu konnten bereits auf wissenschaftlichen Tagungen vorgestellt werden.

Das mehrfach preisgekrönte Flora-Incognita-Projekt wird von einem interdisziplinären Team von Wissenschaftler*innen aus Biologie, Physik, Medientechnik und Informatik des Max-Planck-Instituts für Biogeochemie und der TU Ilmenau vorangetrieben, das erfolgreich Sonderfinanzierungen einwerben konnte. So wurde das Projekt von 2014 bis 2020 durch das Bundesministerium für Bildung und Forschung, das Bundesamt für Naturschutz mit Mitteln des Bundesministeriums für Umwelt, Naturschutz und nukleare Sicherheit sowie durch die Stiftung Naturschutz Thüringen gefördert. Seit Herbst 2019 bearbeitet das Team das Anschlussvorhaben Flora Incognita++, gefördert durch das Bundesamt für Naturschutz mit Mitteln des Bundesministeriums für Umwelt, Naturschutz und nukleare Sicherheit, sowie durch das Thüringer Ministerium für Umwelt, Energie und Naturschutz.

Der Thüringer Forschungspreis wird alljährlich vom Thüringer Ministerium für Wirtschaft, Wissenschaft und Digitale Gesellschaft (TMWWDG) in den beiden Kategorien Grundlagenforschung und Angewandte Forschung ausgeschrieben. Die Preisverleihung und Gratulation durch Wissenschaftsminister Wolfgang Tiefensee fand dieses Jahr virtuell statt.

Flora Incognita bei Thüringer Umweltpreis 2019 mit Sonderpreis geehrt

Der Thüringer Umweltpreis, ausgeschrieben vom Ministerium für Umwelt, Energie und Naturschutz, würdigt den Einsatz für eine lebenswerte Umwelt und eine gesunde Natur. Ausgezeichnet werden in Thüringen vollbrachte herausragende Leistungen und Einsatz im Umweltschutz, die im Kontext einer Nachhaltigen Entwicklung zu ökologischen Verbesserungen beitragen.

Die hochkarätige, 12-köpfige Jury wählte unter den eingegangen Bewerbungen neben Preisträgern außerhalb der akademischen Forschung auch 2 Sonderpreise aus. Die Forschungsgruppe Flora Incognita des Max-Planck-Instituts für Biogeochemie (MPI-BGC) wurde für ihre App zur Pflanzenbestimmung mit diesem Preis geehrt.

Dr. Jana Wäldchen nahm als Leiterin der Forschungsgruppe am MPI-BGC, zusammen mit Prof. (JP) Dr. Patrick Mäder, TU Ilmenau, den Preis der Ministerin Anja Siegesmund im Klimapavillion in Jena entgegen. „Nach fast 5 Jahren intensiver Aufbauarbeit haben wir eine schon sehr stark genutzte und breit akzeptierte App zur automatischen Pflanzenbestimmung geschaffen“ sagt Patrick Mäder, „wir wollen aber weiterhin kontinuierliche Verbesserungen für die Nutzer vornehmen.“ „Langfristig können wir als Forschende mit den Daten aus der Flora Incognita App auch viele weitere Aussagen treffen: Wann blühen welche Arten? Wie stark variieren die Eigenschaften der einzelnen Pflanzen? Welche Zusammenhänge gibt es zum Klimawandel und der Art der Landnutzung?“ betonte Jana Wäldchen.